
Angus M Macnicol

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9485463/publications.pdf

Version: 2024-02-01

#	Article	IF	CITATIONS
1	410 Mild Maternal Undernutrition Results in a Premature Neonatal Leptin Surge and Resistance in Male Offspring to a High Fat Diet. Journal of Clinical and Translational Science, 2022, 6, 79-79.	0.3	0
2	Monensin and its analogues show antiâ€glioblastoma activity in an organoid model of cancer. FASEB Journal, 2022, 36, .	0.2	0
3	The Importance of Leptin to Reproduction. Endocrinology, 2021, 162, .	1.4	96
4	Post-Transcriptional Regulation of Gnrhr: A Checkpoint for Metabolic Control of Female Reproduction. International Journal of Molecular Sciences, 2021, 22, 3312.	1.8	4
5	Musashi as a Regulator of the Follicle-Stimulating Hormone in the Gonadotropes. Journal of the Endocrine Society, 2021, 5, A545-A545.	0.1	Ο
6	The Musashi1 RNA-Binding Protein Functions as a Leptin-Regulated Enforcer of Pituitary Cell Fate and Hormone Production. Journal of the Endocrine Society, 2021, 5, A654-A654.	0.1	0
7	The Cell Fate Determinant Musashi Is Controlled Through Dynamic Protein:Protein Interactions. Journal of the Endocrine Society, 2021, 5, A555-A555.	0.1	Ο
8	Mild Maternal Undernutrition Results in a Premature Neonatal Leptin Surge that Promotes Resistance in Male Offspring to a High Fat Diet. Journal of the Endocrine Society, 2021, 5, A544-A545.	0.1	0
9	Single and double modified salinomycin analogs target stem-like cells in 2D and 3D breast cancer models. Biomedicine and Pharmacotherapy, 2021, 141, 111815.	2.5	7
10	Control of the Anterior Pituitary Cell Lineage Regulator POU1F1 by the Stem Cell Determinant Musashi. Endocrinology, 2021, 162, .	1.4	9
11	Molecular Mechanisms of Pituitary Cell Plasticity. Frontiers in Endocrinology, 2020, 11, 656.	1.5	20
12	Metabolic signalling to somatotrophs: Transcriptional and postâ€ŧranscriptional mediators. Journal of Neuroendocrinology, 2020, 32, e12883.	1.2	12
13	SAT-292 Musashi: A Novel Regulator of the Gonadotrope Transcriptome. Journal of the Endocrine Society, 2020, 4, .	0.1	Ο
14	Sex differences in somatotrope response to fasting: biphasic responses in male mice. Journal of Endocrinology, 2020, 247, 213-224.	1.2	1
15	Somatotrope Responses to Acute and Prolonged Loss of Leptin Signaling. FASEB Journal, 2020, 34, 1-1.	0.2	Ο
16	Novel Salinomycin Analogs Show Improved Selectivity Towards Breast Cancer Stem Cells. FASEB Journal, 2020, 34, 1-1.	0.2	0
17	SAT-284 Musashi Exerts Translational Control Within Anterior Pituitary Cells of the POU1F1 Lineage. Journal of the Endocrine Society, 2020, 4, .	0.1	0
18	SAT-287 Mild Perinatal Undernutrition Results in Underweight Pups and a Premature Neonatal Leptin Surge. Journal of the Endocrine Society, 2020, 4, .	0.1	0

ANGUS M MACNICOL

#	Article	IF	CITATIONS
19	ELAVL1 Elevates Insights: The Ups and Downs of Regulated mRNA Translation in the Control of Gonadotropin Release. Endocrinology, 2019, 160, 2466-2468.	1.4	2
20	Musashi interaction with poly(A)-binding protein is required for activation of target mRNA translation. Journal of Biological Chemistry, 2019, 294, 10969-10986.	1.6	31
21	SAT-417 The Gonadotrope Leptin Signal Is Critical for the Early-Morning Estrus Rise in FSH in Female Mice. Journal of the Endocrine Society, 2019, 3, .	0.1	Ο
22	SAT-406 Deletion of Musashi in Gonadotropes Leads to Increased GnRHR Protein Levels and Gonadotrope Dysfunction. Journal of the Endocrine Society, 2019, 3, .	0.1	0
23	OR24-3 Persistence of Progenitor Cell Markers Following the Selective Ablation of Musashi in Somatotropes. Journal of the Endocrine Society, 2019, 3, .	0.1	0
24	Association of Gnrhr mRNA With the Stem Cell Determinant Musashi: A Mechanism for Leptin-Mediated Modulation of GnRHR Expression. Endocrinology, 2018, 159, 883-894.	1.4	22
25	Sex-specific changes in postnatal GH and PRL secretion in somatotrope LEPR-null mice. Journal of Endocrinology, 2018, 238, 221-230.	1.2	3
26	Evasion of regulatory phosphorylation by an alternatively spliced isoform of Musashi2. Scientific Reports, 2017, 7, 11503.	1.6	16
27	Leptin Regulation of Gonadotrope Gonadotropin-Releasing Hormone Receptors As a Metabolic Checkpoint and Gateway to Reproductive Competence. Frontiers in Endocrinology, 2017, 8, 367.	1.5	46
28	Evidence That G-quadruplex DNA Accumulates in the Cytoplasm and Participates in Stress Granule Assembly in Response to Oxidative Stress. Journal of Biological Chemistry, 2016, 291, 18041-18057.	1.6	71
29	A Sex-Dependent, Tropic Role for Leptin in the Somatotrope as a Regulator of POU1F1 and POU1F1-Dependent Hormones. Endocrinology, 2016, 157, 3958-3971.	1.4	18
30	Functional Integration of mRNA Translational Control Programs. Biomolecules, 2015, 5, 1580-1599.	1.8	9
31	Neural stem and progenitor cell fate transition requires regulation of Musashi1 function. BMC Developmental Biology, 2015, 15, 15.	2.1	25
32	Heck products of parthenolide and melampomagnolide-B as anticancer modulators that modify cell cycle progression. European Journal of Medicinal Chemistry, 2014, 85, 517-525.	2.6	18
33	Heterocyclic aminoparthenolide derivatives modulate G2-M cell cycle progression during Xenopus oocyte maturation. Bioorganic and Medicinal Chemistry Letters, 2014, 24, 1963-1967.	1.0	10
34	Musashi Protein-directed Translational Activation of Target mRNAs Is Mediated by the Poly(A) Polymerase, Germ Line Development Defective-2. Journal of Biological Chemistry, 2014, 289, 14239-14251.	1.6	43
35	Efficient Translation of Dnmt1 Requires Cytoplasmic Polyadenylation and Musashi Binding Elements. PLoS ONE, 2014, 9, e88385.	1.1	23
36	Ringo/Cyclin-dependent Kinase and Mitogen-activated Protein Kinase Signaling Pathways Regulate the Activity of the Cell Fate Determinant Musashi to Promote Cell Cycle Re-entry in Xenopus Oocytes. Journal of Biological Chemistry, 2012, 287, 10639-10649.	1.6	30

ANGUS M MACNICOL

#	Article	IF	CITATIONS
37	Xenopus laevis zygote arrest 2 (zar2) encodes a zinc finger RNA-binding protein that binds to the translational control sequence in the maternal Wee1 mRNA and regulates translation. Developmental Biology, 2012, 369, 177-190.	0.9	25
38	Autoregulation of Musashi1 mRNA translation during Xenopus oocyte maturation. Molecular Reproduction and Development, 2012, 79, 553-563.	1.0	25
39	Context-dependent regulation of Musashi-mediated mRNA translation and cell cycle regulation Cell Cycle, 2011, 10, 39-44.	1.3	68
40	Developmental timing of mRNA translation—integration of distinct regulatory elements. Molecular Reproduction and Development, 2010, 77, 662-669.	1.0	35
41	Enforcing temporal control of maternal mRNA translation during oocyte cell-cycle progression. EMBO Journal, 2010, 29, 387-397.	3.5	52
42	Mos 3′ UTR regulatory differences underlie speciesâ€specific temporal patterns of Mos mRNA cytoplasmic polyadenylation and translational recruitment during oocyte maturation. Molecular Reproduction and Development, 2008, 75, 1258-1268.	1.0	20
43	A novel mRNA 3′ untranslated region translational control sequence regulates Xenopus Wee1 mRNA translation. Developmental Biology, 2008, 317, 454-466.	0.9	27
44	Function and regulation of the mammalian Musashi mRNA translational regulator. Biochemical Society Transactions, 2008, 36, 528-530.	1.6	35
45	Musashi regulates the temporal order of mRNA translation during Xenopus oocyte maturation. EMBO Journal, 2006, 25, 2792-2801.	3.5	157
46	Cytoplasmic Polyadenylation Element (CPE)- and CPE-binding Protein (CPEB)-independent Mechanisms Regulate Early Class Maternal mRNA Translational Activation in Xenopus Oocytes. Journal of Biological Chemistry, 2004, 279, 17650-17659.	1.6	94
47	A novel regulatory element determines the timing of Mos mRNA translation during Xenopus oocyte maturation. EMBO Journal, 2002, 21, 2798-2806.	3.5	60
48	Identification and characterization of the gene encoding human cytoplasmic polyadenylation element binding protein. Gene, 2001, 263, 113-120.	1.0	31
49	Disruption of the 14-3-3 Binding Site within the B-Raf Kinase Domain Uncouples Catalytic Activity from PC12 Cell Differentiation. Journal of Biological Chemistry, 2000, 275, 3803-3809.	1.6	47
50	The Temporal Control of Wee1 mRNA Translation during Xenopus Oocyte Maturation Is Regulated by Cytoplasmic Polyadenylation Elements within the 3′-Untranslated Region. Developmental Biology, 2000, 227, 706-719.	0.9	54
51	The Mitogen-Activated Protein Kinase Signaling Pathway Stimulates Mos mRNA Cytoplasmic Polyadenylation during <i>Xenopus</i> Oocyte Maturation. Molecular and Cellular Biology, 1999, 19, 1990-1999.	1.1	80
52	pXen, a utility vector for the expression of GST-fusion proteins in Xenopus laevis oocytes and embryos. Gene, 1997, 196, 25-29.	1.0	22
53	Raf-1 kinase is essential for early Xenopus development and mediates the induction of mesoderm by FGF. Cell, 1993, 73, 571-583.	13.5	205

54 Leptin: A Metabolic Signal for the Differentiation of Pituitary Cells. , 0, , .

0