Yu-Cheng Chiu

List of Publications by Year in Descending Order

Source: https://exaly.com/author-pdf/9485265/yu-cheng-chiu-publications-by-year.pdf

Version: 2024-04-28

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

3,822 31 99 59 h-index g-index citations papers 9.2 103 4,495 5.44 L-index avg, IF ext. citations ext. papers

#	Paper	IF	Citations
99	Stabilization of Lead-Reduced Metal Halide Perovskite Nanocrystals by High-Entropy Alloying Journal of the American Chemical Society, 2022,	16.4	2
98	Anisotropic nanocrystal superlattices overcoming intrinsic light outcoupling efficiency limit in perovskite quantum dot light-emitting diodes <i>Nature Communications</i> , 2022 , 13, 2106	17.4	6
97	Molecular Origin of Strain-Induced Chain Alignment in PDPP-Based Semiconducting Polymeric Thin Films. <i>Advanced Functional Materials</i> , 2021 , 31, 2100161	15.6	14
96	Novel Authentic and Ultrafast Organic Photorecorders Enhanced by AIE-Active Polymer Electrets via Interlayer Charge Recombination. <i>Advanced Functional Materials</i> , 2021 , 31, 2101288	15.6	8
95	Conception of a Smart Artificial Retina Based on a Dual-Mode Organic Sensing Inverter. <i>Advanced Science</i> , 2021 , 8, e2100742	13.6	11
94	Novel stretchable light-emitting diodes based on conjugated-rod block elastic-coil copolymers. <i>Polymer International</i> , 2021 , 70, 426-431	3.3	7
93	Intrinsically stretchable polymer semiconductors: molecular design, processing and device applications. <i>Journal of Materials Chemistry C</i> , 2021 , 9, 2660-2684	7.1	13
92	Luminescence Behavior and Acceptor Effects of Ambipolar Polymeric Electret on Photorecoverable Organic Field-Effect Transistor Memory. <i>Advanced Electronic Materials</i> , 2021 , 7, 2001076	6.4	7
91	The Impacts of Polyisoprene Physical Interactions on Sorting of Single-Wall Carbon Nanotubes. <i>Macromolecular Rapid Communications</i> , 2021 , 42, e2100327	4.8	2
90	Unveiling the Photoinduced Recovery Mystery in Conjugated Polymer-Based Transistor Memory. <i>ACS Applied Materials & District Sciences</i> , 2021 , 13, 44656-44662	9.5	7
89	Why triage materials with low luminescence quantum efficiency: the use of 35Cbz4BzCN as a universal host for organic light emitting diodes through effective triplet energy transfer. <i>Journal of Materials Chemistry C</i> , 2021 , 9, 2381-2391	7.1	2
88	Indacenodithiophene-based N-type conjugated polymers provide highly thermally stable ternary organic photovoltaics displaying a performance of 17.5%. <i>Journal of Materials Chemistry A</i> , 2021 , 9, 97	80 ¹ 9790	0 11
87	Synergistic Effect in a Graphene Quantum Dot-Enabled Luminescent Skinlike Copolymer for Long-Term pH Detection <i>ACS Applied Materials & Description of Mat</i>	9.5	O
86	Design of Self-Cross-Linkable Poly(n-butyl acrylate)-co-poly[N-(hydroxymethyl)acrylamide] Amphiphilic Copolymers toward Elastic and Self-Healing Properties. <i>ACS Applied Polymer Materials</i> , 2020 , 2, 5432-5443	4.3	6
85	Iron-coordinating Etonjugated semiconducting polymer: morphology and charge transport in organic field-effect transistors. <i>Journal of Materials Chemistry C</i> , 2020 , 8, 8213-8223	7.1	9
84	Tacky Elastomers to Enable Tear-Resistant and Autonomous Self-Healing Semiconductor Composites. <i>Advanced Functional Materials</i> , 2020 , 30, 2000663	15.6	36
83	Synthetic Concept of Intrinsically Elastic Luminescent Polyfluorene-Based Copolymers via RAFT Polymerization. <i>Macromolecules</i> , 2020 , 53, 4030-4037	5.5	10

(2018-2020)

82	Morphology and properties of PEDOT:PSS/soft polymer blends through hydrogen bonding interaction and their pressure sensor application. <i>Journal of Materials Chemistry C</i> , 2020 , 8, 6013-6024	7.1	24
81	Donor-Acceptor Effect of Carbazole-Based Conjugated Polymer Electrets on Photoresponsive Flash Organic Field-Effect Transistor Memories. <i>ACS Applied Materials & Description of the Photores </i>	9.5	28
80	Capabilities of time-resolved X-ray excited optical luminescence of the Taiwan Photon Source 23A X-ray nanoprobe beamline. <i>Journal of Synchrotron Radiation</i> , 2020 , 27, 217-221	2.4	10
79	Scalable photonic sources using two-dimensional lead halide perovskite superlattices. <i>Nature Communications</i> , 2020 , 11, 387	17.4	19
78	Electrospinning-induced elastomeric properties of conjugated polymers for extremely stretchable nanofibers and rubbery optoelectronics. <i>Journal of Materials Chemistry C</i> , 2020 , 8, 873-882	7.1	20
77	Organic-Inorganic Nanocomposite Film for High-Performance Stretchable Resistive Memory Device. <i>Macromolecular Rapid Communications</i> , 2020 , 41, e1900542	4.8	16
76	Improving the Lifetime of CsPbBr Perovskite in Water Using Self-Healing and Transparent Elastic Polymer Matrix. <i>Frontiers in Chemistry</i> , 2020 , 8, 766	5	1
75	Elucidating the impact of molecular weight on morphology, charge transport, photophysics and performance of all-polymer solar cells. <i>Journal of Materials Chemistry A</i> , 2020 , 8, 21070-21083	13	11
74	Influence of Different Molecular Weights and Concentrations of Poly(glycidyl methacrylate) on Recycled Poly(ethylene terephthalate): A Thermal, Mechanical, and Rheological Study. <i>Journal of Polymers and the Environment</i> , 2020 , 28, 2880-2892	4.5	3
73	High-Performance Nonvolatile Organic Photonic Transistor Memory Devices using Conjugated Rod-Coil Materials as a Floating Gate. <i>Advanced Materials</i> , 2020 , 32, e2002638	24	34
72	Morphology and Electronic Properties of Semiconducting Polymer and Branched Polyethylene Blends. <i>ACS Applied Materials & Discrete Mate</i>	9.5	20
71	The Critical Role of Electron-Donating Thiophene Groups on the Mechanical and Thermal Properties of Donor Acceptor Semiconducting Polymers. <i>Advanced Electronic Materials</i> , 2019 , 5, 180089	9 ^{6.4}	52
70	Novel Photoinduced Recovery of OFET Memories Based on Ambipolar Polymer Electret for Photorecorder Application. <i>Advanced Functional Materials</i> , 2019 , 29, 1902991	15.6	32
69	Exploitation of Thermoresponsive Switching Organic Field-Effect Transistors. ACS Omega, 2019, 4, 2208	8 <u>3-</u> 3208	88
68	Amide-Containing Alkyl Chains in Conjugated Polymers: Effect on Self-Assembly and Electronic Properties. <i>Macromolecules</i> , 2018 , 51, 1336-1344	5.5	60
67	Self-assembled oligosaccharide-based block copolymers as charge-storage materials for memory devices. <i>Polymer Journal</i> , 2018 , 50, 649-658	2.7	10
66	Morphology and optoelectronic characteristics of organic field-effect transistors based on blends of polylactic acid and poly(3-hexylthiophene). <i>Polymer Journal</i> , 2018 , 50, 975-987	2.7	11
65	Control over Molecular Architectures of Carbohydrate-Based Block Copolymers for Stretchable Electrical Memory Devices. <i>Macromolecules</i> , 2018 , 51, 4966-4975	5.5	23

64	Influence of amide-containing side chains on the mechanical properties of diketopyrrolopyrrole-based polymers. <i>Polymer Chemistry</i> , 2018 , 9, 5531-5542	4.9	38
63	Developing the XEOL and TR-XEOL at the X-ray Nanoprobe at Taiwan Photon Source. <i>Microscopy and Microanalysis</i> , 2018 , 24, 200-201	0.5	2
62	An Elastic Interfacial Transistor Enabled by Superhydrophobicity. <i>Small</i> , 2018 , 14, e1804006	11	5
61	Interfacial Field-Effect Transistors: An Elastic Interfacial Transistor Enabled by Superhydrophobicity (Small 51/2018). <i>Small</i> , 2018 , 14, 1870247	11	
60	Enhanced Charge Transport and Stability Conferred by Iron(III)-Coordination in a Conjugated Polymer Thin-Film Transistors. <i>Advanced Electronic Materials</i> , 2018 , 4, 1800239	6.4	9
59	Unraveling the stress effects on the optical properties of stretchable rod-coil polyfluorene-poly(n-butyl acrylate) block copolymer thin films. <i>Polymer Chemistry</i> , 2018 , 9, 3820-3831	4.9	19
58	Conception of Stretchable Resistive Memory Devices Based on Nanostructure-Controlled Carbohydrate-block-Polyisoprene Block Copolymers. <i>Advanced Functional Materials</i> , 2017 , 27, 1606161	15.6	55
57	Nonvolatile Perovskite-Based Photomemory with a Multilevel Memory Behavior. <i>Advanced Materials</i> , 2017 , 29, 1702217	24	87
56	Effects of Molecular Structure and Packing Order on the Stretchability of Semicrystalline Conjugated Poly(Tetrathienoacene-diketopyrrolopyrrole) Polymers. <i>Advanced Electronic Materials</i> , 2017 , 3, 1600311	6.4	66
55	Taming Charge Transport in Semiconducting Polymers with Branched Alkyl Side Chains. <i>Advanced Functional Materials</i> , 2017 , 27, 1701973	15.6	59
54	Ultrapure Green Light-Emitting Diodes Using Two-Dimensional Formamidinium Perovskites: Achieving Recommendation 2020 Color Coordinates. <i>Nano Letters</i> , 2017 , 17, 5277-5284	11.5	166
53	Renewable polymeric materials for electronic applications. <i>Polymer Journal</i> , 2017 , 49, 61-73	2.7	28
52	Aggregation-induced emission in lamellar solids of colloidal perovskite quantum wells. <i>Science Advances</i> , 2017 , 3, eaaq0208	14.3	51
51	Intrinsically stretchable and healable semiconducting polymer for organic transistors. <i>Nature</i> , 2016 , 539, 411-415	50.4	779
50	Crosslinkable high dielectric constant polymer dielectrics for low voltage organic field-effect transistor memory devices. <i>Journal of Polymer Science Part A</i> , 2016 , 54, 3224-3236	2.5	9
49	High Performance Transparent Transistor Memory Devices Using Nano-Floating Gate of Polymer/ZnO Nanocomposites. <i>Scientific Reports</i> , 2016 , 6, 20129	4.9	60
48	Non-Conjugated Flexible Linkers in Semiconducting Polymers: A Pathway to Improved Processability without Compromising Device Performance. <i>Advanced Electronic Materials</i> , 2016 , 2, 1600	104	54
47	Novel highly sensitive and reversible electrospun nanofibrous chemosensor-filters composed of poly(HEMA-co-MNA) and bpy-F-bpy with metal-ion-modulated multicolor fluorescence emission. <i>Polymer Journal</i> , 2016 , 48, 439-449	2.7	15

(2014-2016)

46	Synthesis, morphology, and electrical memory application of oligosaccharide-based block copolymers with Econjugated pyrene moieties and their supramolecules. <i>Polymer Chemistry</i> , 2016 , 7, 1249-1263	4.9	12
45	Donor Acceptor Poly (3-hexylthiophene)-block-Pendent Poly (isoindigo) with Dual Roles of Charge Transporting and Storage Layer for High-Performance Transistor-Type Memory Applications. <i>Advanced Functional Materials</i> , 2016 , 26, 2695-2705	15.6	45
44	Impact of Polystyrene Oligomer Side Chains on Naphthalene Diimide B ithiophene Polymers as n-Type Semiconductors for Organic Field-Effect Transistors. <i>Advanced Functional Materials</i> , 2016 , 26, 1261-1270	15.6	29
43	Controllable electrical performance of spray-coated semiconducting small molecule/insulating polymer blend thin film for organic field effect transistors application. <i>Reactive and Functional Polymers</i> , 2016 , 108, 130-136	4.6	12
42	Stretchable Self-Healing Polymeric Dielectrics Cross-Linked Through Metal-Ligand Coordination. Journal of the American Chemical Society, 2016 , 138, 6020-7	16.4	341
41	Efficient Blue Electroluminescence Using Quantum-Confined Two-Dimensional Perovskites. <i>ACS Nano</i> , 2016 , 10, 9720-9729	16.7	239
40	Electrospun Poly(3-hexylthiophene) Nanofibers with Highly Extended and Oriented Chains Through Secondary Electric Field for High-Performance Field-Effect Transistors. <i>Advanced Electronic Materials</i> , 2015 , 1, 1400028	6.4	24
39	Nonvolatile memories using the electrets of conjugated rod-coil block copolymer and its nanocomposite with single wall carbon nanotubes. <i>Journal of Materials Chemistry C</i> , 2015 , 3, 551-558	7.1	20
38	Organic Electronics: Conjugated Polymer Nanoparticles as Nano Floating Gate Electrets for High Performance Nonvolatile Organic Transistor Memory Devices (Adv. Funct. Mater. 10/2015). <i>Advanced Functional Materials</i> , 2015 , 25, 1611-1611	15.6	1
37	Partially-Screened Field Effect and Selective Carrier Injection at Organic Semiconductor/Graphene Heterointerface. <i>Nano Letters</i> , 2015 , 15, 7587-95	11.5	49
36	Field-Effect Transistors: Oligosaccharide Carbohydrate Dielectrics toward High-Performance Non-volatile Transistor Memory Devices (Adv. Mater. 40/2015). <i>Advanced Materials</i> , 2015 , 27, 6256-6256	5 ²⁴	
35	Oligosaccharide Carbohydrate Dielectrics toward High-Performance Non-volatile Transistor Memory Devices. <i>Advanced Materials</i> , 2015 , 27, 6257-64	24	49
34	Non-volatile organic transistor memory devices using the poly(4-vinylpyridine)-based supramolecular electrets. <i>Chemical Communications</i> , 2015 , 51, 2562-4	5.8	17
33	Electrospun nanofibers with dual plasmonic-enhanced luminescent solar concentrator effects for high-performance organic photovoltaic cells. <i>Journal of Materials Chemistry A</i> , 2015 , 3, 15039-15048	13	26
32	Synthesis of Oligosaccharide-Based Block Copolymers with Pendent Econjugated Oligofluorene Moieties and Their Electrical Device Applications. <i>Macromolecules</i> , 2015 , 48, 3907-3917	5.5	24
31	Synthesis of multifunctional poly(1-pyrenemethyl methacrylate)-b-poly(N-isopropylacrylamide)-b-poly(N-methylolacrylamide)s and their electrospun nanofibers for metal ion sensory applications. <i>Polymer Chemistry</i> , 2015 , 6, 2327-2336	4.9	16
30	Conjugated Polymer Nanoparticles as Nano Floating Gate Electrets for High Performance Nonvolatile Organic Transistor Memory Devices. <i>Advanced Functional Materials</i> , 2015 , 25, 1511-1519	15.6	132
29	High performance nonvolatile transistor memories of pentacene using the electrets of star-branched p-type polymers and their donor\(\text{lcceptor} \) blends. Journal of Materials Chemistry C, 2014 , 2, 1436	7.1	38

28	Plasmon-Enhanced Polymer Photovoltaic Device Performance Using Different Patterned Ag/PVP Electrospun Nanofibers. <i>Advanced Energy Materials</i> , 2014 , 4, 1301665	21.8	40
27	Syntheses of Biaxially Extended Octithiophene-Based Conjugated Copolymers for High-Open-Circuit-Voltage Photovoltaic-Cell Applications. <i>Macromolecular Chemistry and Physics</i> , 2014 , 215, 638-647	2.6	6
26	High-Performance Nonvolatile Transistor Memories of Pentacence Using the Green Electrets of Sugar-based Block Copolymers and Their Supramolecules. <i>Advanced Functional Materials</i> , 2014 , 24, 424	0 - 4249	76
25	Ultra metal ions and pH sensing characteristics of thermoresponsive luminescent electrospun nanofibers prepared from poly(HPBO-co-NIPAAm-co-SA). <i>RSC Advances</i> , 2014 , 4, 45345-45353	3.7	31
24	Ambipolar field-effect transistors using conjugated polymers with structures of bilayer, binary blends, and paralleled nanofibers. <i>Journal of Materials Chemistry C</i> , 2014 , 2, 7489-7493	7.1	8
23	High-k polymer-graphene oxide dielectrics for low-voltage flexible nonvolatile transistor memory devices. <i>Chemical Communications</i> , 2014 , 50, 3217-9	5.8	41
22	Using a single electrospun polymer nanofiber to enhance carrier mobility in organic field-effect transistors toward nonvolatile memory. <i>ACS Applied Materials & District Materia</i>	9.5	17
21	Multilevel nonvolatile flexible organic field-effect transistor memories employing polyimide electrets with different charge-transfer effects. <i>Macromolecular Rapid Communications</i> , 2014 , 35, 1039-	45 ⁸	28
20	High-performance nonvolatile organic transistor memory devices using the electrets of semiconducting blends. <i>ACS Applied Materials & Acs Applied & Acs Applie</i>	9.5	64
19	Multifunctional Electrospun Nanofibers Prepared from Poly((N-isopropylacrylamide)-co-(N-hydroxymethylacrylamide)) and Their Blends with 1,2-Diaminoanthraquinone for NO Gas Detection. <i>Macromolecular Chemistry and Physics</i> , 2014 , 215, 286	2.6 5- 294	28
18	Memory: High-Performance Nonvolatile Transistor Memories of Pentacence Using the Green Electrets of Sugar-based Block Copolymers and Their Supramolecules (Adv. Funct. Mater. 27/2014). <i>Advanced Functional Materials</i> , 2014 , 24, 4198-4198	15.6	1
17	Semi-conjugated acceptor-based polyimides as electrets for nonvolatile transistor memory devices. <i>Polymer Chemistry</i> , 2014 , 5, 6834-6846	4.9	14
16	Tunable dielectric constant of polyimideBarium titanate nanocomposite materials as the gate dielectrics for organic thin film transistor applications. <i>RSC Advances</i> , 2014 , 4, 62132-62139	3.7	15
15	Electrospun Fibers as a Solid-State Real-Time Zinc Ion Sensor with High Sensitivity and Cell Medium Compatibility. <i>Advanced Functional Materials</i> , 2013 , 23, 1566-1574	15.6	29
14	Multilevel nonvolatile transistor memories using a star-shaped poly((4-diphenylamino)benzyl methacrylate) gate electret. NPG Asia Materials, 2013, 5, e35-e35	10.3	61
13	pH-responsive Dendritic Gelators. <i>Chemistry Letters</i> , 2012 , 41, 92-94	1.7	2
12	Biaxially Extended Quaterthiopheneland Octithiophenellinylene Conjugated Polymers for High Performance Field Effect Transistors and Photovoltaic Cells. <i>Macromolecules</i> , 2012 , 45, 3047-3056	5.5	26
11	Synthesis, morphology, and sensory applications of multifunctional rod-coil-coil triblock copolymers and their electrospun nanofibers. <i>ACS Applied Materials & amp; Interfaces</i> , 2012 , 4, 3387-95	9.5	61

LIST OF PUBLICATIONS

10	Morphology and field-effect transistor characteristics of semicrystalline poly(3-hexylthiophene) and poly(stearyl acrylate) blend nanowires. <i>Journal of Materials Chemistry</i> , 2012 , 22, 14682		19
9	Design and synthesis of new cationic water-soluble pyrene containing dendrons for DNA sensory applications. <i>Journal of Polymer Science Part A</i> , 2012 , 50, 297-305	2.5	6
8	Poly[2,7-(9,9-dihexylfluorene)]-block-Poly(2-vinylpyridine) Rodicoil Star-block Copolymers: Synthesis, Micellar Structures, and Photophysical Properties. <i>Macromolecular Chemistry and Physics</i> , 2011 , 212, 297-304	2.6	6
7	Highly ordered luminescent microporous films prepared from crystalline conjugated rod-coil diblock copolymers of PF-b-PSA and their superhydrophobic characteristics. <i>Soft Matter</i> , 2011 , 7, 9350	3.6	35
6	Thermoresponsive luminescent electrospun fibers prepared from poly(DMAEMA-co-SA-co-StFl) multifunctional random copolymers. <i>ACS Applied Materials & Distributed Materials & D</i>	9.5	36
5	Synthesis of New Star-Shaped Polymers with Styrene E luorene Conjugated Moieties and Their Multicolor Luminescent Ordered Microporous Films. <i>Macromolecules</i> , 2010 , 43, 7151-7158	5.5	30
4	New Thermoresponsive Luminescent Electrospun Nanofibers Prepared from Poly[2,7-(9,9-dihexylfluorene)]-block-poly(N-isopropylacrylamide)/PMMA Blends. <i>Macromolecular Chemistry and Physics</i> , 2010 , 211, 1408-1416	2.6	27
3	Conjugated Polymer-Wrapped Single-Wall Carbon Nanotubes for High-Mobility Photonic/Electrical Fully Modulated Synaptic Transistor. <i>Advanced Materials Technologies</i> ,2101506	6.8	3
2	Precise Control of Noncovalent Interactions in Semiconducting Polymers for High-Performance Organic Field-Effect Transistors. <i>Chemistry of Materials</i> ,	9.6	5
1	Tunneling-Effect-Boosted Interfacial Charge Trapping toward Photo-Organic Transistor Memory. Advanced Electronic Materials,2101349	6.4	2