Zbynek Dzuman

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9483826/publications.pdf

Version: 2024-02-01

516561 677027 1,142 22 16 22 citations g-index h-index papers 23 23 23 1481 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Free and conjugated Alternaria and Fusarium mycotoxins during Pilsner malt production and double-mash brewing. Food Chemistry, 2022, 369, 130926.	4.2	10
2	Fungal Endophytes of Vitis vinifera—Plant Growth Promoters or Potentially Toxinogenic Agents?. Toxins, 2022, 14, 66.	1.5	8
3	Regulated and Non-Regulated Mycotoxin Detection in Cereal Matrices Using an Ultra-High-Performance Liquid Chromatography High-Resolution Mass Spectrometry (UHPLC-HRMS) Method. Toxins, 2021, 13, 783.	1.5	9
4	A Non-Targeted High-Resolution Mass Spectrometry Study for Extra Virgin Olive Oil Adulteration with Soft Refined Oils: Preliminary Findings from Two Different Laboratories. ACS Omega, 2020, 5, 24169-24178.	1.6	14
5	Development of a new LC-MS method for accurate and sensitive determination of 33 pyrrolizidine and 21 tropane alkaloids in plant-based food matrices. Analytical and Bioanalytical Chemistry, 2020, 412, 7155-7167.	1.9	25
6	Poor chemical and microbiological quality of the commercial milk thistle-based dietary supplements may account for their reported unsatisfactory and non-reproducible clinical outcomes. Scientific Reports, 2019, 9, 11118.	1.6	39
7	Analysis of phosphodiesterase type 5 inhibitors as possible adulterants of botanical-based dietary supplements: extensive survey of preparations available at the Czech market. Journal of Pharmaceutical and Biomedical Analysis, 2019, 164, 713-724.	1.4	28
8	Untargeted metabolomics based on ultra-high-performance liquid chromatography–high-resolution mass spectrometry merged with chemometrics: A new predictable tool for an early detection of mycotoxins. Food Chemistry, 2017, 224, 423-431.	4.2	50
9	Fate of Free and Conjugated Mycotoxins within the Production of Distiller's Dried Grains with Solubles (DDGS). Journal of Agricultural and Food Chemistry, 2016, 64, 5085-5092.	2.4	21
10	Bioprospecting of microalgae: Proper extraction followed by high performance liquid chromatographic–high resolution mass spectrometric fingerprinting as key tools for successful metabolom characterization. Journal of Chromatography B: Analytical Technologies in the Biomedical and Life Sciences, 2016, 1015-1016, 22-33.	1,2	14
11	Effect of <i>Fusarium culmorum Tri</i> Gene Transcription on Deoxynivalenol and D3G Levels in Two Different Barley Cultivars. Journal of Phytopathology, 2015, 163, 593-603.	0.5	4
12	Multi-analyte high performance liquid chromatography coupled to high resolution tandem mass spectrometry method for control of pesticide residues, mycotoxins, and pyrrolizidine alkaloids. Analytica Chimica Acta, 2015, 863, 29-40.	2.6	108
13	Mycotoxins in Plant-Based Dietary Supplements: Hidden Health Risk for Consumers. Journal of Agricultural and Food Chemistry, 2015, 63, 6633-6643.	2.4	76
14	Monitoring survey of patulin in a variety of fruit-based products using a sensitive UHPLC–MS/MS analytical procedure. Food Control, 2015, 47, 577-584.	2.8	53
15	A rugged high-throughput analytical approach for the determination and quantification of multiple mycotoxins in complex feed matrices. Talanta, 2014, 121, 263-272.	2.9	94
16	Enzyme-linked immunosorbent assay in analysis of deoxynivalenol: investigation of the impact of sample matrix on results accuracy. Analytical and Bioanalytical Chemistry, 2014, 406, 505-514.	1.9	28
17	Rapid LCâ€MSâ€based metabolomics method to study the <i>Fusarium</i> infection of barley. Journal of Separation Science, 2014, 37, 912-919.	1.3	37
18	â€~Emerging' mycotoxins in cereals processing chains: Changes of enniatins during beer and bread making. Food Chemistry, 2013, 136, 750-757.	4.2	139

#	Article	IF	CITATIONS
19	Analysis of mycotoxins in barley using ultra high liquid chromatography high resolution mass spectrometry: Comparison of efficiency and efficacy of different extraction procedures. Talanta, 2012, 99, 712-719.	2.9	106
20	Effects of Milling and Baking Technologies on Levels of Deoxynivalenol and its Masked Form Deoxynivalenol-3-Glucoside. Journal of Agricultural and Food Chemistry, 2011, 59, 9303-9312.	2.4	103
21	Deoxynivalenol, Deoxynivalenol-3-glucoside, and Enniatins: The Major Mycotoxins Found in Cereal-Based Products on the Czech Market. Journal of Agricultural and Food Chemistry, 2011, 59, 12990-12997.	2.4	121
22	<i>Fusarium</i> mycotoxins in various barley cultivars and their transfer into malt. Journal of the Science of Food and Agriculture, 2010, 90, 2495-2505.	1.7	55