Gabriel Loget

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9483798/publications.pdf Version: 2024-02-01

CARRIEL LOCET

#	Article	IF	CITATIONS
1	Epitaxial III–V/Si Vertical Heterostructures with Hybrid 2Dâ€5emimetal/Semiconductor Ambipolar and Photoactive Properties. Advanced Science, 2022, 9, e2101661.	5.6	13
2	Electrochemiluminescence with semiconductor (nano)materials. Chemical Science, 2022, 13, 2528-2550.	3.7	94
3	Solar-assisted urea oxidation at silicon photoanodes promoted by an amorphous and optically adaptive Ni–Mo–O catalytic layer. Journal of Materials Chemistry A, 2022, 10, 19769-19776.	5.2	14
4	Metalâ€Insulatorâ€Semiconductor Anodes for Ultrastable and Siteâ€Selective Upconversion Photoinduced Electrochemiluminescence. Angewandte Chemie - International Edition, 2022, 61, .	7.2	12
5	Anti-Stokes photoinduced electrochemiluminescence at a photocathode. Chemical Communications, 2022, 58, 6686-6688.	2.2	6
6	Wireless Anti-Stokes Photoinduced Electrochemiluminescence at Closed Semiconducting Bipolar Electrodes. Journal of Physical Chemistry Letters, 2022, 13, 5538-5544.	2.1	9
7	Custom plating of nanoscale semiconductor/catalyst junctions for photoelectrochemical water splitting. Nanoscale, 2021, 13, 1997-2004.	2.8	7
8	Photoinduced electrochemiluminescence at nanostructured hematite electrodes. Electrochimica Acta, 2021, 381, 138238.	2.6	12
9	Photoelectrochemistry at semiconductor/liquid interfaces triggered by electrochemiluminescence. Cell Reports Physical Science, 2021, 2, 100670.	2.8	7
10	Dissociating Water at n‣i Photoanodes Partially Covered with Fe Catalysts. Advanced Energy Materials, 2020, 10, 1902963.	10.2	23
11	Bismuthâ€Decorated Silicon Photocathodes for CO ₂ â€ŧoâ€Formate Solarâ€Driven Conversion. ChemCatChem, 2020, 12, 5819-5825.	1.8	8
12	Photoelectrochemical Sensing of Hydrogen Peroxide on Hematite. ChemElectroChem, 2020, 7, 1155-1159.	1.7	16
13	Luminescence Amplification at BiVO 4 Photoanodes by Photoinduced Electrochemiluminescence. Angewandte Chemie, 2020, 132, 15269-15272.	1.6	7
14	Luminescence Amplification at BiVO ₄ Photoanodes by Photoinduced Electrochemiluminescence. Angewandte Chemie - International Edition, 2020, 59, 15157-15160.	7.2	23
15	Structure–Property Relationships in Redox-Derivatized Metal–Insulator–Semiconductor (MIS) Photoanodes. Journal of Physical Chemistry C, 2020, 124, 25907-25916.	1.5	11
16	Tailoring the photoelectrochemistry of catalytic metal-insulator-semiconductor (MIS) photoanodes by a dissolution method. Nature Communications, 2019, 10, 3522.	5.8	49
17	Photoinduced Electrochemiluminescence at Silicon Electrodes in Water. Journal of the American Chemical Society, 2019, 141, 13013-13016.	6.6	79
18	Molecular and Material Engineering of Photocathodes Derivatized with Polyoxometalate-Supported {Mo ₃ S ₄ } HER Catalysts. Journal of the American Chemical Society, 2019, 141, 11954-11962.	6.6	34

GABRIEL LOGET

#	Article	IF	CITATIONS
19	Black Silicon Photoanodes Entirely Prepared with Abundant Materials by Low-Cost Wet Methods. ACS Applied Energy Materials, 2019, 2, 1006-1010.	2.5	19
20	Remote ion-pair interactions in Fe-porphyrin-based molecular catalysts for the hydrogen evolution reaction. Catalysis Science and Technology, 2019, 9, 1301-1308.	2.1	24
21	Water oxidation with inhomogeneous metal-silicon interfaces. Current Opinion in Colloid and Interface Science, 2019, 39, 40-50.	3.4	34
22	Boosting the Performance of BiVO4Prepared through Alkaline Electrodeposition with an Amorphous Fe Coâ€Catalyst. ChemElectroChem, 2019, 6, 613-617.	1.7	7
23	Polyoxothiometalate-Derivatized Silicon Photocathodes for Sunlight-Driven Hydrogen Evolution Reaction. ACS Omega, 2018, 3, 13837-13849.	1.6	13
24	Elucidating the performance and unexpected stability of partially coated water-splitting silicon photoanodes. Energy and Environmental Science, 2018, 11, 2590-2599.	15.6	50
25	A General Concept for Solar Waterâ€Splitting Monolithic Photoelectrochemical Cells Based on Earthâ€Abundant Materials and a Lowâ€Cost Photovoltaic Panel. Advanced Sustainable Systems, 2018, 2, 1800075.	2.7	7
26	Dispersed Ni Nanoparticles Stabilize Silicon Photoanodes for Efficient and Inexpensive Sunlight-Assisted Water Oxidation. ACS Energy Letters, 2017, 2, 569-573.	8.8	68
27	Enhancing light trapping of macroporous silicon by alkaline etching: application for the fabrication of black Si nanospike arrays. Materials Chemistry Frontiers, 2017, 1, 1881-1887.	3.2	9
28	Spontaneous decoration of silicon surfaces with MoO _x nanoparticles for the sunlight-assisted hydrogen evolution reaction. Nanoscale, 2017, 9, 1799-1804.	2.8	20
29	Ultra-Antireflective Electrodeposited Plasmonic and PEDOT Nanocone Array Surfaces. Journal of Physical Chemistry C, 2017, 121, 22377-22383.	1.5	6
30	Wireless Light-Emitting Electrochemical Rotors. Journal of Physical Chemistry Letters, 2017, 8, 4930-4934.	2.1	19
31	(Invited) Atomic Layer Deposition: A Great Tool to Synthetize High Efficiency Electrodes for Solar Fuel Generation?. ECS Meeting Abstracts, 2017, , .	0.0	0
32	Polydopamine-Coated TiO ₂ Nanotubes for Selective Photocatalytic Oxidation of Benzyl Alcohol to Benzaldehyde Under Visible Light. Journal of Nanoscience and Nanotechnology, 2016, 16, 5353-5358.	0.9	16
33	Protected Light-Trapping Silicon by a Simple Structuring Process for Sunlight-Assisted Water Splitting. ACS Applied Materials & Interfaces, 2016, 8, 24810-24818.	4.0	24
34	Tuning the Photoelectrocatalytic Hydrogen Evolution of Pt-Decorated Silicon Photocathodes by the Temperature and Time of Electroless Pt Deposition. Langmuir, 2016, 32, 11728-11735.	1.6	11
35	Combined local anodization of titanium and scanning photoelectrochemical mapping of TiO2 spot arrays. Electrochimica Acta, 2016, 222, 84-91.	2.6	9
36	Lightâ€Driven Bipolar Electrochemical Logic Gates with Electrical or Optical Outputs. ChemElectroChem, 2016, 3, 366-371.	1.7	7

GABRIEL LOGET

#	Article	IF	CITATIONS
37	Highly controlled coating of biomimetic polydopamine in TiO2 nanotubes. Electrochemistry Communications, 2015, 52, 41-44.	2.3	43
38	Logic gates operated by bipolar photoelectrochemical water splitting. Chemical Communications, 2015, 51, 11115-11118.	2.2	22
39	The EChemPen: A Guiding Hand To Learn Electrochemical Surface Modifications. Journal of Chemical Education, 2015, 92, 1700-1704.	1.1	6
40	Silica Nanowire Arrays for Diffractionâ€Based Bioaffinity Sensing. Chemistry - A European Journal, 2014, 20, 10802-10810.	1.7	8
41	H ₂ Mapping on Pt-Loaded TiO ₂ Nanotube Gradient Arrays. Langmuir, 2014, 30, 15356-15363.	1.6	22
42	Straight-forward synthesis of ringed particles. Chemical Science, 2014, 5, 1961.	3.7	33
43	Flexible Teflon Nanocone Array Surfaces with Tunable Superhydrophobicity for Self-Cleaning and Aqueous Droplet Patterning. ACS Applied Materials & Interfaces, 2014, 6, 11110-11117.	4.0	94
44	Bipolar anodization enables the fabrication of controlled arrays of TiO ₂ nanotube gradients. Journal of Materials Chemistry A, 2014, 2, 17740-17745.	5.2	52
45	Lithographically Patterned Nanoscale Electrodeposition of Plasmonic, Bimetallic, Semiconductor, Magnetic, and Polymer Nanoring Arrays. Journal of Physical Chemistry C, 2014, 118, 28993-29000.	1.5	25
46	Wireless powering of e -swimmers. Scientific Reports, 2014, 4, 6705.	1.6	50
47	Electrodeposition of Polydopamine Thin Films for DNA Patterning and Microarrays. Analytical Chemistry, 2013, 85, 9991-9995.	3.2	70
48	Fabrication of Broadband Antireflective Plasmonic Gold Nanocone Arrays on Flexible Polymer Films. Nano Letters, 2013, 13, 6164-6169.	4.5	94
49	Wireless Electrografting of Molecular Layers for Janus Particle Synthesis. Chemistry - A European Journal, 2013, 19, 1577-1580.	1.7	31
50	Bipolar Electrochemistry: From Materials Science to Motion and Beyond. Accounts of Chemical Research, 2013, 46, 2513-2523.	7.6	325
51	Indirect Bipolar Electrodeposition. Journal of the American Chemical Society, 2012, 134, 20033-20036.	6.6	86
52	Lightâ€Emitting Electrochemical "Swimmers― Angewandte Chemie - International Edition, 2012, 51, 11284-11288.	7.2	91
53	Assymetric Nanoâ€objects: True Bulk Synthesis of Janus Objects by Bipolar Electrochemistry (Adv. Mater.) Tj ETO	Qq110.78	84314 rgBT
54	Bulk synthesis of Janus objects and asymmetric patchy particles. Journal of Materials Chemistry, 2012, 22, 15457.	6.7	121

GABRIEL LOGET

#	Article	IF	CITATIONS
55	Bipolar electrochemistry for cargo-lifting in fluid channels. Lab on A Chip, 2012, 12, 1967.	3.1	55
56	Direct Visualization of Symmetry Breaking During Janus Nanoparticle Formation. Small, 2012, 8, 2698-2703.	5.2	18
57	True Bulk Synthesis of Janus Objects by Bipolar Electrochemistry. Advanced Materials, 2012, 24, 5111-5116.	11.1	170
58	Versatile Procedure for Synthesis of Janus-Type Carbon Tubes. Chemistry of Materials, 2011, 23, 2595-2599.	3.2	67
59	Electric field-induced chemical locomotion of conducting objects. Nature Communications, 2011, 2, 535.	5.8	384
60	Straightforward single-step generation of microswimmers by bipolar electrochemistry. Electrochimica Acta, 2011, 56, 10562-10566.	2.6	78
61	Shaping and exploring the micro- and nanoworld using bipolar electrochemistry. Analytical and Bioanalytical Chemistry, 2011, 400, 1691-1704.	1.9	94
62	Direct Electron Transfer of Hemoglobin and Myoglobin at the Bare Glassy Carbon Electrode in an Aqueous BMI.BF ₄ Ionic‣iquid Mixture. ChemPhysChem, 2011, 12, 411-418.	1.0	10
63	Single point electrodeposition of nickel for the dissymmetric decoration of carbon tubes. Electrochimica Acta, 2010, 55, 8116-8120.	2.6	42
64	Propulsion of Microobjects by Dynamic Bipolar Self-Regeneration. Journal of the American Chemical Society, 2010, 132, 15918-15919.	6.6	166
65	Efficiency and stability of transition metal electrocatalysts for the hydrogen evolution reaction using ionic liquids as electrolytes. International Journal of Hydrogen Energy, 2009, 34, 84-90.	3.8	27
66	Molybdenum electrodes for hydrogen production by water electrolysis using ionic liquid electrolytes. Electrochemistry Communications, 2008, 10, 1673-1675.	2.3	43
67	Bipolar electrochemistry in the nanosciences. SPR Electrochemistry, 0, , 71-103.	0.7	7
68	Metalâ€Insulatorâ€Semiconductor Anodes for Ultrastable and Siteâ€Selective Upconversion Photoinduced Electrochemiluminescence. Angewandte Chemie, 0, , .	1.6	1