
Rajai Z Al-Rousan

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/948373/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Experimental and Parametric Study of Circular Short Columns Confined with CFRP Composites. Journal of Composites for Construction, 2009, 13, 135-147.	3.2	71
2	Fatigue performance of reinforced concrete beams strengthened with CFRP sheets. Construction and Building Materials, 2011, 25, 3520-3529.	7.2	65
3	Bond-slip behavior between carbon fiber reinforced polymer sheets and heat-damaged concrete. Composites Part B: Engineering, 2013, 45, 1049-1060.	12.0	60
4	Effect of sulfates on bond behavior between carbon fiber reinforced polymer sheets and concrete. Materials & Design, 2013, 43, 237-248.	5.1	50
5	Performance of reinforced concrete slabs strengthened with different types and configurations of CFRP. Composites Part B: Engineering, 2012, 43, 510-521.	12.0	47
6	Repair of shear-deficient and sulfate-damaged reinforced concrete beams using FRP composites. Engineering Structures, 2013, 56, 228-238.	5.3	45
7	NLFEA sulfate-damage reinforced concrete beams strengthened with FRP composites. Composite Structures, 2013, 96, 433-445.	5.8	33
8	An anchorage system for CFRP strips bonded to thermally shocked concrete. International Journal of Adhesion and Adhesives, 2016, 71, 10-22.	2.9	33
9	Empirical and NLFEA prediction of bond-slip behavior between DSSF concrete and anchored CFRP composites. Construction and Building Materials, 2018, 169, 530-542.	7.2	33
10	Influence of synthetic fibers on the shear behavior of lightweight concrete beams. Advances in Structural Engineering, 2017, 20, 1671-1683.	2.4	32
11	Flexural behavior of RC beams externally strengthened with CFRP composites exposed to severe environment conditions. KSCE Journal of Civil Engineering, 2017, 21, 2300-2309.	1.9	31
12	Behavior of macro synthetic fiber concrete beams strengthened with different CFRP composite configurations. Journal of Building Engineering, 2018, 20, 595-608.	3.4	31
13	Bond-slip behavior between fiber reinforced concrete and CFRP composites. Ain Shams Engineering Journal, 2019, 10, 359-367.	6.1	31
14	Bond–slip behaviour between self-compacting concrete and carbon-fibre-reinforced polymer sheets. Magazine of Concrete Research, 2015, 67, 89-103.	2.0	29
15	The effect of beam depth on the shear behavior of reinforced concrete beams externally strengthened with carbon fiber–reinforced polymer composites. Advances in Structural Engineering, 2016, 19, 1769-1779.	2.4	29
16	Repair of shear-deficient normal weight concrete beams damaged by thermal shock using advanced composite materials. Composites Part B: Engineering, 2015, 70, 20-34.	12.0	28
17	Influence of polypropylene fibers on the flexural behavior of reinforced concrete slabs with different opening shapes and sizes. Structural Concrete, 2017, 18, 986-999.	3.1	28
18	Modifying CFRP–concrete bond characteristics from pull-out testing. Magazine of Concrete Research, 2015, 67, 707-717.	2.0	26

#	Article	IF	CITATIONS
19	Nonlinear Finite Element Analysis of B-C Connections: Influence of the Column Axial Load, Jacket Thickness, and Fiber Dosage. Structures, 2018, 16, 50-62.	3.6	25
20	Impact resistance of polypropylene fiber reinforced concrete two-way slabs. Structural Engineering and Mechanics, 2017, 62, 373-380.	1.0	25
21	Impact of curvature type on the behavior of slender reinforced concrete rectangular column confined with CFRP composite. Composites Part B: Engineering, 2019, 173, 106939.	12.0	22
22	An Anchoring Groove Technique to Enhance the Bond Behavior between Heat-Damaged Concrete and CFRP Composites. Buildings, 2020, 10, 232.	3.1	21
23	Anchoring holes configured to enhance the bond-slip behavior between CFRP composites and concrete. Construction and Building Materials, 2020, 250, 118905.	7.2	20
24	Consequence of surface preparation techniques on the bond behavior between concrete and CFRP composites. Construction and Building Materials, 2019, 212, 362-374.	7.2	18
25	Precise finite element modelling of the bond-slip contact behavior between CFRP composites and concrete. Construction and Building Materials, 2020, 240, 117943.	7.2	18
26	Consequence of anchoring holes technique on the bond behavior between CFRP composites and heat-damaged concrete. Structures, 2020, 27, 1903-1918.	3.6	18
27	Anchoring of the main CFRP sheets with transverse CFRP strips for optimum upgrade of RC Beams: Parametric experimental study. Construction and Building Materials, 2021, 293, 123525.	7.2	18
28	Stress–strain model and design guidelines for CFRPâ€confined circular reinforced concrete columns. Polymer Composites, 2018, 39, 2722-2733.	4.6	16
29	Finite-element modelling of concrete-filled steel tube columns wrapped with CFRP. Proceedings of the Institution of Civil Engineers: Structures and Buildings, 2020, 173, 844-857.	0.8	16
30	Experimental study on anchoring of FRP-strengthened concrete beams. Structures, 2020, 23, 26-33.	3.6	16
31	Behavior of Circular Reinforced Concrete Columns Confined with CFRP Composites. Procedia Manufacturing, 2020, 44, 623-630.	1.9	15
32	Effect of CFRP Schemes on the Flexural Behavior of RC Beams Modeled by Using a Nonlinear Finite-element Analysis. Mechanics of Composite Materials, 2015, 51, 437-446.	1.4	14
33	Assessment of shrinkage-induced cracks in restrained and unrestrained cement-based slabs. Construction and Building Materials, 2017, 131, 371-380.	7.2	14
34	Recycling of pre-treated medical waste fly ash in mortar mixtures. Journal of Material Cycles and Waste Management, 2020, 22, 207-220.	3.0	14
35	Integration of CFRP strips as an internal shear reinforcement in reinforced concrete beams. Structures, 2020, 23, 13-19.	3.6	14
36	Nonlinear finite element analysis of full-scale concrete bridge deck slabs reinforced with FRP bars. Structures, 2020, 27, 1820-1831.	3.6	13

#	Article	IF	CITATIONS
37	Integration of FRP sheet as internal reinforcement in reinforced concrete beam-column joints exposed to sulfate damaged. Structures, 2021, 31, 891-908.	3.6	13
38	NLFEA of Sulfate-Damaged Circular CFT Steel Columns Confined with CFRP Composites and Subjected to Axial and Cyclic Lateral Loads. Buildings, 2022, 12, 296.	3.1	13
39	Flexural behavior of lightweight concrete beams encompassing various dosages of macro synthetic fibers and steel ratios. Case Studies in Construction Materials, 2017, 7, 280-293.	1.7	12
40	Failure Analysis of Polypropylene Fiber Reinforced Concrete Two-Way Slabs Subjected to Static and Impact Load Induced by Free Falling Mass. Latin American Journal of Solids and Structures, 2018, 15, .	1.0	12
41	Control of Vibrations of Common Pedestrian Bridges in Jordan Using Tuned Mass Dampers. Procedia Manufacturing, 2020, 44, 36-43.	1.9	11
42	Composite Behavior of Precast Concrete Full-Depth Panels and Prestressed Girders. PCI Journal, 2006, 51, 132-145.	0.6	10
43	Impact of bonded carbon fibre composite on the shear strength of reinforced concrete beams. Proceedings of the Institution of Civil Engineers: Structures and Buildings, 2018, 171, 364-379.	0.8	8
44	Shear strengthening of high-strength reinforced concrete beams using fibrous composites. Magazine of Concrete Research, 2004, 56, 419-428.	2.0	7
45	Simulating the response of CFRP strengthened shear-keys in composite concrete bridges. Materials and Design, 2016, 90, 733-744.	7.0	7
46	Shear Repairing and Strengthening of Reinforced Concrete Beams Using SIFCON. Structures, 2018, 14, 389-399.	3.6	7
47	Numerical simulation of the influence of bond strength degradation on the behavior of reinforced concrete beam-column joints externally strengthened with FRP sheets. Case Studies in Construction Materials, 2021, 15, e00567.	1.7	7
48	Behavior of plain concrete beams with DSSF strengthened in flexure with anchored CFRP sheets—Effects of DSSF content on the bonding length of CFRP sheets. Case Studies in Construction Materials, 2018, 9, e00195.	1.7	6
49	Impact of anchored holes technique on behavior of reinforced concrete beams strengthened with different CFRP sheet lengths and widths. Case Studies in Construction Materials, 2020, 13, e00405.	1.7	6
50	Predicting the Optimum Shear Capacity of Reinforced Concrete Beams Externally Strengthened With CFRP Composites. Procedia Manufacturing, 2020, 44, 631-638.	1.9	6
51	Behavior of Auxetic Steel Wire RC Columns Exposed to Elevated Temperature. Latin American Journal of Solids and Structures, 2021, 18, .	1.0	6
52	Impact of elevated temperature and anchored grooves on the shear behavior of reinforced concrete beams strengthened with CFRP composites. Case Studies in Construction Materials, 2021, 14, e00487.	1.7	6
53	Behavior of heated damaged reinforced concrete beam-column joints strengthened with FRP. Case Studies in Construction Materials, 2021, 15, e00584.	1.7	6
54	The behavior heated-damaged reinforced concrete beams retrofitted with different CFRP strip length and number of transverse groove. Case Studies in Construction Materials, 2022, 16, e00896.	1.7	6

#	Article	IF	CITATIONS
55	Finite element analysis of a 2-span pedestrian bridge collapse due to trucks collision. KSCE Journal of Civil Engineering, 2015, 19, 1845-1851.	1.9	5
56	Optimum Endurance Time of Reinforced Concrete One Way Slab Subjected to Fire. Procedia Manufacturing, 2020, 44, 520-527.	1.9	5
57	The optimum overlay thickness of prefabricated full-depth precast concrete bridge deck panel system – 3D non-linear finite element modeling. Engineering Structures, 2015, 100, 264-275.	5.3	4
58	Predicting the bond-slip relationship between concrete and CFRP using anchoring holes technique. Case Studies in Construction Materials, 2020, 13, e00462.	1.7	4
59	Behavior of Prefabricated Full-Depth Precast Concrete Bridge Deck Panel System: Optimum Prestress Level. Procedia Manufacturing, 2020, 44, 607-614.	1.9	4
60	Hybrid CFRP-steel for enhancing the flexural behavior of reinforced concrete beams. Journal of King Saud University, Engineering Sciences, 2021, 33, 459-470.	2.0	4
61	Optimization of the economic practicability of fiber-reinforced polymer (FRP) cable-stayed bridge decks. Bridge Structures, 2014, 10, 129-143.	0.4	3
62	Operational Modal Analysis of the Curved JUST Footbridge Induced by Human. Procedia Manufacturing, 2020, 44, 599-606.	1.9	3
63	Shear response of RC beams encompassing hybrid CFRP strips and steel stirrups: Beam depth effect. Structures, 2022, 38, 781-796.	3.6	3
64	Impact of elevated temperature on the behavior of full-scale concrete bridge deck slabs reinforced with GFRP bars. Structures, 2022, 43, 621-634.	3.6	3
65	Response of interior beam-column connections integrated with various schemes of CFRP composites. Case Studies in Construction Materials, 2021, 14, e00488.	1.7	2
66	The behavior of heated damaged shear-deficient RC beams reinforced internally with welded wire mesh. Case Studies in Construction Materials, 2021, 15, e00687.	1.7	2
67	The impact of the welded wire mesh as internal reinforcement on the flexural behavior of RC beams exposed to elevated temperature. Case Studies in Construction Materials, 2021, 15, e00618.	1.7	2
68	Cyclic behavior of alkali-silica reaction-damaged reinforced concrete beam-column joints strengthened with FRP composites. Case Studies in Construction Materials, 2022, 16, e00869.	1.7	2
69	Cyclic lateral behavior of NLFEA heat-damaged circular CFT steel columns confined at the end with CFRP composites. Case Studies in Construction Materials, 2022, 17, e01223.	1.7	2
70	Vibration Serviceability Investigation of a Curved Footbridge. Practice Periodical on Structural Design and Construction, 2022, 27, .	1.3	2
71	Modeling of Bond Stresses of Overlay–Bridge Deck System. Transportation Research Record, 2009, 2113, 72-82.	1.9	1
72	Cylindrical thin-walled concrete structures under lateral loading. Proceedings of the Institution of Civil Engineers: Structures and Buildings, 2015, 168, 326-335.	0.8	1

#	Article	IF	CITATIONS
73	Flexural performance of lightweight reinforced-concrete slabs. Proceedings of the Institution of Civil Engineers: Structures and Buildings, 2016, 169, 257-269.	0.8	1
74	Satisfactory margin of safety against shear failure of lightweight reinforced concrete beams: 3D finite element modeling. KSCE Journal of Civil Engineering, 2016, 20, 1482-1492.	1.9	1
75	Novel Nonlinear Model for Analysis of RC Slabs with Various Boundary Conditions Under Monotonic Loading. International Review of Civil Engineering, 2018, 9, 218.	0.1	1
76	Response of Reinforced Concrete Slabs Strengthened with CFRP. Journal of Engineering Science and Technology Review, 2020, 13, 125-129.	0.4	1
77	The Optimum Reinforced Concrete Deck Stiffness of Cable-Stayed Bridge Decks. Procedia Manufacturing, 2020, 44, 342-349.	1.9	1
78	Impact of sulfate damage on the behavior of full-scale concrete bridge deck slabs reinforced with FRP bars. Case Studies in Construction Materials, 2022, 16, e01030.	1.7	1
79	Nonlinear finite element analysis of thermoplastic railroad bridge. Journal of Thermoplastic Composite Materials, 2016, 29, 850-866.	4.2	0
80	The extrema point deviatoric moment component. Ain Shams Engineering Journal, 2021, 12, 341-354.	6.1	0
81	Integration of CFRP strips as an internal shear reinforcement in reinforced concrete beams exposed to elevated temperature. Case Studies in Construction Materials, 2021, 14, e00508.	1.7	0
82	The Impact of Asphalt Wearing Surface Thickness on Response of Two-Span Continuous Cast-in-Place Prestressed Concrete Box Girder Highway Bridge. Journal of Engineering Science and Technology Review, 2019, 12, 173-177.	0.4	0
83	Analysis of Rectangular Plates Based on the Hydrostatic Point Phenomenon. , 0, , .		0