
Jose F De Celis

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9483558/publications.pdf

Version: 2024-02-01

LOSE E DE CEUS

#	Article	IF	CITATIONS
1	Proneural clusters of achaete-scute expression and the generation of sensory organs in the Drosophila imaginal wing disc Genes and Development, 1991, 5, 996-1008.	5.9	431
2	A dorsal/ventral boundary established by Notch controls growth and polarity in the Drosophila eye. Nature, 1998, 396, 276-278.	27.8	245
3	A gene complex acting downstream of dpp in Drosophila wing morphogenesis. Nature, 1996, 381, 421-424.	27.8	231
4	Pattern formation in theDrosophila wing: The development of the veins. BioEssays, 2003, 25, 443-451.	2.5	188
5	Roles of the Notch gene in Drosophila wing morphogenesis. Mechanisms of Development, 1994, 46, 109-122.	1.7	139
6	Feed-back mechanisms affecting Notch activation at the dorsoventral boundary in the Drosophila wing. Development (Cambridge), 1997, 124, 3241-51.	2.5	132
7	Developmental Genetics of the Venation Pattern of Drosophila. Annual Review of Genetics, 1992, 26, 277-304.	7.6	124
8	<i>Drosophila</i> laminins act as key regulators of basement membrane assembly and morphogenesis. Development (Cambridge), 2009, 136, 4165-4176.	2.5	124
9	Regulation and function of Spalt proteins during animal development. International Journal of Developmental Biology, 2009, 53, 1385-1398.	0.6	118
10	Activation and function of Notch at the dorsal-ventral boundary of the wing imaginal disc. Development (Cambridge), 1996, 122, 359-69.	2.5	118
11	Two-step process for photoreceptor formation in Drosophila. Nature, 2001, 412, 911-913.	27.8	113
12	Identification of Regulatory Regions Driving the Expression of the Drosophila spalt Complex at Different Developmental Stages. Developmental Biology, 1999, 215, 33-47.	2.0	93
13	Regulation of spalt expression in the Drosophila wing blade in response to the Decapentaplegic signaling pathway. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101, 6021-6026.	7.1	86
14	Function of the spalt/spalt-related gene complex in positioning the veins in the Drosophila wing. Mechanisms of Development, 2000, 91, 31-41.	1.7	85
15	The Complex Tale of the <i>achaete–scute</i> Complex: A Paradigmatic Case in the Analysis of Gene Organization and Function During Development. Genetics, 2009, 182, 631-639.	2.9	85
16	Notch signalling mediates segmentation of the Drosophila leg. Development (Cambridge), 1998, 125, 4617-26.	2.5	76
17	Genetic and molecular characterization of a Notch mutation in its Delta- and Serrate-binding domain in Drosophila Proceedings of the National Academy of Sciences of the United States of America, 1993, 90, 4037-4041.	7.1	73
18	Cell-autonomous role of Notch, an epidermal growth factor homologue, in sensory organ differentiation in Drosophila Proceedings of the National Academy of Sciences of the United States of America, 1991, 88, 632-636.	7.1	72

JOSE F DE CELIS

#	Article	IF	CITATIONS
19	Modifications of the notch function by Abruptex mutations in Drosophila melanogaster Genetics, 1994, 136, 183-194.	2.9	70
20	Notch signalling regulates veinlet expression and establishes boundaries between veins and interveins in the Drosophila wing. Development (Cambridge), 1997, 124, 1919-28.	2.5	68
21	Functional relationships between Notch, Su(H) and the bHLH genes of the E(spl) complex: the E(spl) genes mediate only a subset of Notch activities during imaginal development. Development (Cambridge), 1996, 122, 2719-28.	2.5	67
22	Expression and function of decapentaplegic and thick veins during the differentiation of the veins in the Drosophila wing. Development (Cambridge), 1997, 124, 1007-18.	2.5	65
23	A Gain-of-Function Screen Identifying Genes Required for Growth and Pattern Formation of the <i>Drosophila melanogaster</i> Wing. Genetics, 2009, 183, 1005-1026.	2.9	59
24	The G protein-coupled receptor regulatory kinase GPRK2 participates in Hedgehog signaling in Drosophila. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 7963-7968.	7.1	58
25	Interactions between the Notch, EGFR, and decapentaplegic signaling pathways regulate vein differentiation duringDrosophila pupal wing development. Developmental Dynamics, 2005, 232, 738-752.	1.8	56
26	Conserved cross-interactions inDrosophilaandXenopusbetween Ras/MAPK signaling and the dual-specificity phosphatase MKP3. Developmental Dynamics, 2005, 232, 695-708.	1.8	49
27	Positioning and differentiation of veins in the Drosophila wing. International Journal of Developmental Biology, 1998, 42, 335-43.	0.6	44
28	A Gain-of-Function Screen Identifying Genes Required for Vein Formation in the Drosophila melanogaster Wing. Genetics, 2006, 174, 1635-1659.	2.9	43
29	Developmental basis for vein pattern variations in insect wings. International Journal of Developmental Biology, 2003, 47, 653-63.	0.6	41
30	Regulation of the spalt/spalt-related gene complex and its function during sensory organ development in the Drosophila thorax. Development (Cambridge), 1999, 126, 2653-62.	2.5	39
31	The cell biology of Smo signalling and its relationships with GPCRs. Biochimica Et Biophysica Acta - Biomembranes, 2007, 1768, 901-912.	2.6	37
32	Role of the Drosophila Non-Visual ß-Arrestin Kurtz in Hedgehog Signalling. PLoS Genetics, 2011, 7, e1001335.	3.5	36
33	Osa, a subunit of the BAP chromatin-remodelling complex, participates in the regulation of gene expression in response to EGFR signalling in the Drosophila wing. Developmental Biology, 2009, 329, 350-361.	2.0	33
34	Activation and function of TGFÎ ² signalling during Drosophila wing development and its interactions with the BMP pathway. Developmental Biology, 2013, 377, 138-153.	2.0	30
35	Behavior of extramacrochaetae mutant cells in the morphogenesis of the Drosophila wing. Mechanisms of Development, 1995, 53, 209-221.	1.7	27
36	The Spalt transcription factors regulate cell proliferation, survival and epithelial integrity downstream of the Decapentaplegic signalling pathway. Biology Open, 2013, 2, 37-48.	1.2	27

JOSE F DE CELIS

#	Article	IF	CITATIONS
37	Ventral veinless, the gene encoding the Cf1a transcription factor, links positional information and cell differentiation during embryonic and imaginal development in Drosophila melanogaster. Development (Cambridge), 1995, 121, 3405-16.	2.5	26
38	Drosophila Axud1 is involved in the control of proliferation and displays pro-apoptotic activity. Mechanisms of Development, 2009, 126, 184-197.	1.7	25
39	Function of trans-acting genes of theachaete-scute complex in sensory organ patterning in the mesonotum ofDrosophila. Roux's Archives of Developmental Biology, 1991, 200, 64-76.	1.2	24
40	MAP4K3 Is a Component of the TORC1 Signalling Complex that Modulates Cell Growth and Viability in Drosophila melanogaster. PLoS ONE, 2011, 6, e14528.	2.5	24
41	Regulation of decapentaplegic expression during Drosophila wing veins pupal development. Mechanisms of Development, 2006, 123, 241-251.	1.7	22
42	Identification of Genes Affecting Wing Patterning Through a Loss-of-Function Mutagenesis Screen and Characterization of <i>med15</i> Function During Wing Development. Genetics, 2010, 185, 671-684.	2.9	21
43	The Spalt Transcription Factors Generate the Transcriptional Landscape of the Drosophila melanogaster Wing Pouch Central Region. PLoS Genetics, 2015, 11, e1005370.	3.5	20
44	groucho and hedgehog regulate engrailed expression in the anterior compartment of the Drosophila wing. Development (Cambridge), 1995, 121, 3467-76.	2.5	20
45	Linking pseudouridine synthases to growth, development and cell competition. FEBS Journal, 2010, 277, 3249-3263.	4.7	19
46	A Search for Genes Mediating the Growth-Promoting Function of TGFÎ ² in the <i>Drosophila melanogaster</i> Wing Disc. Genetics, 2017, 206, 231-249.	2.9	19
47	Characterization of dSnoN and its relationship to Decapentaplegic signaling in Drosophila. Developmental Biology, 2007, 306, 66-81.	2.0	17
48	Independent roles of Drosophila Moesin in imaginal disc morphogenesis and hedgehog signalling. Mechanisms of Development, 2006, 123, 337-351.	1.7	16
49	A conserved function of the chromatin ATPase Kismet in the regulation of hedgehog expression. Developmental Biology, 2011, 350, 382-392.	2.0	16
50	Tay Bridge Is a Negative Regulator of EGFR Signalling and Interacts with Erk and Mkp3 in the Drosophila melanogaster Wing. PLoS Genetics, 2013, 9, e1003982.	3.5	13
51	Patterning of the <i>Drosophila</i> L2 vein is driven by regulatory interactions between region-specific transcription factors expressed in response to Dpp signalling. Development (Cambridge), 2017, 144, 3168-3176.	2.5	13
52	The balance between GMD and OFUT1 regulates Notch signaling pathway activity by modulating Notch stability. Biological Research, 2011, 44, 25-34.	3.4	12
53	Structure of developmental gene regulatory networks from the perspective of cell fate-determining genes. Transcription, 2016, 7, 32-37.	3.1	8
54	Signalling Pathways in Development and Human Disease: A Drosophila Wing Perspective. , 0, , .		8

4

JOSE F DE CELIS

#	Article	IF	CITATIONS
55	Genetic and developmental analyses of chaetae pattern formation in Drosophila tergites. Roux's Archives of Developmental Biology, 1991, 200, 132-142.	1.2	7
56	The function of vestigial in Drosophila wing development: How are tissue-specific responses to signalling pathways specified?. BioEssays, 1999, 21, 542-545.	2.5	7
57	Genome-wide phenotypic RNAi screen in the <i>Drosophila</i> wing: phenotypic description of functional classes. G3: Genes, Genomes, Genetics, 2021, 11, .	1.8	7
58	Genome-wide phenotypic RNAi screen in the <i>Drosophila</i> wing: global parameters. G3: Genes, Genomes, Genetics, 2021, 11, .	1.8	6
59	A cautionary tale on genetic screens based on a gain-of-expression approach: The case of LanB1. Fly, 2010, 4, 24-29.	1.7	5
60	EGFRAP encodes a new negative regulator of the EGFR acting in both normal and oncogenic EGFR/Ras-driven tissue morphogenesis. PLoS Genetics, 2021, 17, e1009738.	3.5	5
61	Genetic Annotation of Gain-Of-Function Screens Using RNA Interference and in Situ Hybridization of Candidate Genes in the Drosophila Wing. Genetics, 2012, 192, 741-752.	2.9	4
62	Drosophila Imaginal Discs as a Playground for Genetic Analysis: Concepts, Techniques and Expectations for Biomedical Research. , 0, , .		4
63	Functional requirements of protein kinases and phosphatases in the development of the <i>Drosophila melanogaster</i> wing. G3: Genes, Genomes, Genetics, 2021, 11, .	1.8	4
64	Understanding the Determinants of Notch Interactions with Its Ligands. Science Signaling, 2013, 6, pe19.	3.6	3
65	Ras2, the TC21/R-Ras2 Drosophila homologue, contributes to insulin signalling but is not required for organism viability. Developmental Biology, 2020, 461, 172-183.	2.0	3
66	Transcriptional Regulation by the Spalt Proteins: Filling Up the Gaps. Molecular Biology (Los Angeles,) Tj ETQq0 0	0 rgBT /O	verlock 10 Tf

67	Tay bridge and extracellularâ€regulated kinase activity are required for motoneuron function in the Drosophila neural system. Genes, Brain and Behavior, 2018, 17, e12470.	2.2	1
68	José Luis Gómez-Skarmeta (1966-2020). Development (Cambridge), 2020, 147, .	2.5	1