Sandra Roger

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9483205/publications.pdf Version: 2024-02-01

SANDRA ROCER

#	Article	IF	CITATIONS
1	5G V2V Communication With Antenna Selection Based on Context Awareness: Signaling and Performance Study. IEEE Transactions on Intelligent Transportation Systems, 2022, 23, 1044-1057.	8.0	10
2	Performance analysis of a millimeter wave MIMO channel estimation method in an embedded multi-core processor. Journal of Supercomputing, 2022, 78, 14756-14767.	3.6	1
3	Low-Latency Infrastructure-Based Cellular V2V Communications for Multi-Operator Environments With Regional Split. IEEE Transactions on Intelligent Transportation Systems, 2021, 22, 1052-1067.	8.0	14
4	Cluster-Based Relocation of Stations for Efficient Forest Fire Management in the Province of Valencia (Spain). Sensors, 2021, 21, 797.	3.8	3
5	Fast Channel Estimation in the Transformed Spatial Domain for Analog Millimeter Wave Systems. IEEE Transactions on Wireless Communications, 2021, 20, 5926-5941.	9.2	9
6	On the Use of Composite Indicators for Mobile Communications Network Management in Smart Sustainable Cities. Applied Sciences (Switzerland), 2021, 11, 181.	2.5	4
7	Low-complexity AoA and AoD Estimation in the Transformed Spatial Domain for Millimeter Wave MIMO Channels. , 2021, , .		1
8	Girls4STEM: Gender Diversity in STEM for a Sustainable Future. Sustainability, 2020, 12, 6051.	3.2	36
9	Application of Radio Environment Map Reconstruction Techniques to Platoon-based Cellular V2X Communications. Sensors, 2020, 20, 2440.	3.8	7
10	Communication cost of channel estimation interpolation for group-based vehicular communications in cellular networks. , 2020, , .		0
11	Combining Inter-Subject Modeling with a Subject-Based Data Transformation to Improve Affect Recognition from EEG Signals. Sensors, 2019, 19, 2999.	3.8	29
12	Signaling Reduction in 5G eV2X Communications Based on Vehicle Grouping. , 2019, , .		1
13	SART3D: A MATLAB toolbox for spatial audio and signal processing education. Computer Applications in Engineering Education, 2019, 27, 971-985.	3.4	7
14	5G Functional Architecture and Signaling Enhancements to Support Path Management for eV2X. IEEE Access, 2019, 7, 20484-20498.	4.2	10
15	Multi-Connectivity Management for 5G V2X Communication. , 2019, , .		6
16	Low-Latency Layer-2-Based Multicast Scheme for Localized V2X Communications. IEEE Transactions on Intelligent Transportation Systems, 2019, 20, 2962-2975.	8.0	29
17	Low-latency V2X Communication Through Localized MBMS with Local V2X Servers Coordination. , 2018, , .		6

18 5G multi-antenna V2V channel modeling with a 3D game engine. , 2018, , .

SANDRA ROGER

#	Article	IF	CITATIONS
19	Forced Inter-Operator Handover for V2X Communication in Multi-Operator Environments with Regional Splitting. , 2018, , .		2
20	Evaluation of LTE-Advanced connectivity options for the provisioning of V2X services. , 2018, , .		20
21	On the integration of Grassmannian Constellations into LTE networks: A link-level performance study. , 2017, , .		3
22	Distributed Hybrid Precoding for Indoor Deployments Using Millimeter Wave Band. Mobile Information Systems, 2017, 2017, 1-12.	0.6	6
23	Multicarrier Waveform Harmonization and Complexity Analysis for an Efficient 5G Air Interface Implementation. Wireless Communications and Mobile Computing, 2017, 2017, 1-11.	1.2	1
24	Performance Evaluation of Analog Beamforming with Hardware Impairments for mmW Massive MIMO Communication in an Urban Scenario. Sensors, 2016, 16, 1555.	3.8	15
25	Non-Coherent Open-Loop MIMO Communications Over Temporally-Correlated Channels. IEEE Access, 2016, 4, 6161-6170.	4.2	10
26	Performance of hybrid beamforming for mmW multi-antenna systems in dense urban scenarios. , 2016, ,		3
27	An Overview of Device-to-Device Communications Technology Components in METIS. IEEE Access, 2016, 4, 3288-3299.	4.2	54
28	Time-Frequency Grassmannian Signalling for MIMO Multi-Channel-Frequency-Flat Systems. IEEE Communications Letters, 2015, 19, 475-478.	4.1	3
29	Multi-functional MIMO communication in multi-hop cellular systems. Eurasip Journal on Advances in Signal Processing, 2014, 2014, .	1.7	3
30	Multi-User Non-Coherent Detection for Downlink MIMO Communication. IEEE Signal Processing Letters, 2014, 21, 1225-1229.	3.6	13
31	Improved Maximum Likelihood detection through sphere decoding combined with box optimization. Signal Processing, 2014, 98, 284-294.	3.7	10
32	Multicore implementation of a fixed-complexity tree-search detector for MIMO communications. Journal of Supercomputing, 2013, 65, 1010-1019.	3.6	6
33	Fully Parallel GPU Implementation of a Fixed-Complexity Soft-Output MIMO Detector. IEEE Transactions on Vehicular Technology, 2012, 61, 3796-3800.	6.3	34
34	A reconfigurable GPU implementation for Tomlinson-Harashima precoding. , 2012, , .		4
35	An efficient GPU implementation of fixed-complexity sphere decoders for MIMO wireless systems. Integrated Computer-Aided Engineering, 2012, 19, 341-350.	4.6	8
36	An Efficient Fixed-Complexity Sphere Decoder with Quantized Soft Outputs. IEEE Communications Letters, 2012, 16, 1828-1831.	4.1	2

SANDRA ROGER

#	Article	IF	CITATIONS
37	Practical aspects of preprocessing techniques for K-Best tree search MIMO detectors. Computers and Electrical Engineering, 2011, 37, 451-460.	4.8	4
38	Variable-breadth K-best detector for MIMO systems. , 2010, , .		1
39	Extended LLL algorithm for efficient signal precoding in multiuser communication systems. IEEE Communications Letters, 2010, 14, 220-222.	4.1	5
40	An evaluation of precoding techniques for multiuser communication systems. , 2010, , .		5
41	Lattice-Reduction-Aided K-Best MIMO detector based on the channel matrix condition number. , 2010, , .		2
42	A deterministic lower bound for the radius in sphere decoding search. , 2010, , .		1
43	Final year projects in electrical and information engineering: Tips for students and supervisors. , 2009, , .		4
44	Complexity assessment of sphere decoding methods for MIMO detection. , 2009, , .		8
45	Developing your electrical engineering degree thesis [Personal and Professional Growth]. IEEE Potentials, 2009, 28, 12-16.	0.3	2
46	A gradient-based ordering for MIMO decoding. , 2009, , .		2
47	MIMO Channel Matrix Condition Number Estimation and Threshold Selection for Combined K-Best Sphere Decoders. IEICE Transactions on Communications, 2009, E92.B, 1380-1383.	0.7	8
48	Combined K-Best sphere decoder based on the channel matrix condition number. , 2008, , .		15
49	Active learning in digital communications with low-cost software defined radio. , 0, , .		Ο
50	Combinación de cuestionarios simples y gamificados utilizando gestores de participación en el aula: experiencia y percepción del alumnado. , 0, , .		3
51	Radio definida por software y docencia en lÃnea: experiencia en el Grado en IngenierÃa Telemática. , 0, , .		0
52	Game-based learning supported by audience response tools: game proposals and preliminary assessment. , 0, , .		1