Mariangela Agamennone

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/94826/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Structural Insight into the Stereoselective Inhibition of MMP-8 by Enantiomeric Sulfonamide Phosphonates. Journal of Medicinal Chemistry, 2006, 49, 923-931.	2.9	70
2	Bovine lactoferrin-derived peptides as novel broad-spectrum inhibitors of influenza virus. Pathogens and Global Health, 2012, 106, 12-19.	1.0	53
3	N-Hydroxyurea as zinc binding group in matrix metalloproteinase inhibition: Mode of binding in a complex with MMP-8. Bioorganic and Medicinal Chemistry Letters, 2006, 16, 20-24.	1.0	52
4	Biphenyl Sulfonylamino Methyl Bisphosphonic Acids as Inhibitors of Matrix Metalloproteinases and Bone Resorption. ChemMedChem, 2011, 6, 1258-1268.	1.6	44
5	α-Biphenylsulfonylamino 2-methylpropyl phosphonates: Enantioselective synthesis and selective inhibition of MMPs. Bioorganic and Medicinal Chemistry, 2007, 15, 791-799.	1.4	39
6	Arylamino methylene bisphosphonate derivatives as bone seeking matrix metalloproteinase inhibitors. Bioorganic and Medicinal Chemistry, 2013, 21, 6456-6465.	1.4	34
7	Bovine Lactoferrin Prevents Influenza A Virus Infection by Interfering with the Fusogenic Function of Viral Hemagglutinin. Viruses, 2019, 11, 51.	1.5	33
8	AMBER force field implementation of the boronate function to simulate the inhibition of β-lactamases by alkyl and aryl boronic acids. European Journal of Medicinal Chemistry, 2005, 40, 1134-1142.	2.6	32
9	Synthesis, SAR, and Biological Evaluation of αâ€5ulfonylphosphonic Acids as Selective Matrix Metalloproteinase Inhibitors. ChemMedChem, 2009, 4, 352-362.	1.6	31
10	Catechol-based matrix metalloproteinase inhibitors with additional antioxidative activity. Journal of Enzyme Inhibition and Medicinal Chemistry, 2016, 31, 25-37.	2.5	29
11	Lactoferrin-derived Peptides Active towards Influenza: Identification of Three Potent Tetrapeptide Inhibitors. Scientific Reports, 2017, 7, 10593.	1.6	28
12	Synthesis and evaluation of new tripeptide phosphonate inhibitors of MMP-8 and MMP-2. European Journal of Medicinal Chemistry, 2005, 40, 271-279.	2.6	23
13	Fragmenting the S100B–p53 Interaction: Combined Virtual/Biophysical Screening Approaches to Identify Ligands. ChemMedChem, 2010, 5, 428-435.	1.6	22
14	Probing the S1′ Site for the Identification of Nonâ€Zincâ€Binding MMPâ€2 Inhibitors. ChemMedChem, 2013, 8 1475-1482.	³ , _{1.6}	22
15	Identification of new anti- <i>Candida</i> compounds by ligand-based pharmacophore virtual screening. Journal of Enzyme Inhibition and Medicinal Chemistry, 2016, 31, 1703-1706.	2.5	19
16	Novel bisphosphonates with antiresorptive effect in bone mineralization and osteoclastogenesis. European Journal of Medicinal Chemistry, 2018, 158, 184-200.	2.6	19
17	Seeking for Non-Zinc-Binding MMP-2 Inhibitors: Synthesis, Biological Evaluation and Molecular Modelling Studies. International Journal of Molecular Sciences, 2016, 17, 1768.	1.8	17
18	Development of CDK4/6 Inhibitors: A Five Years Update. Molecules, 2021, 26, 1488.	1.7	17

#	Article	IF	CITATIONS
19	Peptidyl 3-substituted 1-hydroxyureas as isosteric analogues of succinylhydroxamate MMP inhibitors. European Journal of Medicinal Chemistry, 2008, 43, 1008-1014.	2.6	16
20	Fragmentâ€Based Discovery of 5â€Arylisatinâ€Based Inhibitors of Matrix Metalloproteinases 2 and 13. ChemMedChem, 2016, 11, 1892-1898.	1.6	16
21	PPARα agonists based on stilbene and its bioisosteres: biological evaluation and docking studies. MedChemComm, 2015, 6, 1513-1517.	3.5	13
22	Amino Acid Derivatives as New Zinc Binding Groups for the Design of Selective Matrix Metalloproteinase Inhibitors. Journal of Amino Acids, 2013, 2013, 1-12.	5.8	12
23	Phosphonate Emerging Zinc Binding Group in Matrix Metalloproteinase Inhibitors. Current Drug Targets, 2015, 16, 1634-1644.	1.0	12
24	Non-Zinc-Binding Inhibitors of MMP-13: GRID-Based Approaches to Rationalize the Binding Process. Current Topics in Medicinal Chemistry, 2015, 16, 449-459.	1.0	11
25	An Effective Virtual Screening Protocol To Identify Promising p53–MDM2 Inhibitors. Journal of Chemical Information and Modeling, 2016, 56, 1216-1227.	2.5	10
26	Virtual screening identification and chemical optimization of substituted 2-arylbenzimidazoles as new non-zinc-binding MMP-2 inhibitors. Bioorganic and Medicinal Chemistry, 2020, 28, 115257.	1.4	10
27	In vitro comparison of new bisphosphonic acids and zoledronate effects on human gingival fibroblasts viability, inflammation and matrix turnover. Clinical Oral Investigations, 2016, 20, 2013-2021.	1.4	9
28	Bisphosfonate matrix metalloproteinase inhibitors for the treatment of periodontitis: An in vitro study. International Journal of Molecular Medicine, 2018, 42, 651-657.	1.8	8
29	Investigation of the N-BP Binding at FPPS by Combined Computational Approaches. Medicinal Chemistry, 2015, 11, 417-431.	0.7	8
30	Identification of small molecules acting against H1N1 influenza A virus. Virology, 2016, 488, 249-258.	1.1	7
31	An Integrated Computational Approach to Rationalize the Activity of Non-Zinc-Binding MMP-2 Inhibitors. PLoS ONE, 2012, 7, e47774.	1.1	7
32	Discovery of 7-aminophenanthridin-6-one as a new scaffold for matrix metalloproteinase inhibitors with multitarget neuroprotective activity. European Journal of Medicinal Chemistry, 2021, 210, 113061.	2.6	6
33	Dual targeting of cancer-related human matrix metalloproteinases and carbonic anhydrases by chiral <i>N</i> -(biarylsulfonyl)-phosphonic acids. Journal of Enzyme Inhibition and Medicinal Chemistry, 2017, 32, 1260-1264.	2.5	4
34	Discovery of a Novel Tetrapeptide against Influenza A Virus: Rational Design, Synthesis, Bioactivity Evaluation and Computational Studies. Pharmaceuticals, 2021, 14, 959.	1.7	4
35	Ac-tLeu-Asp-H is the minimal and highly effective human caspase-3 inhibitor: biological and in silico studies. Amino Acids, 2015, 47, 153-162.	1.2	3
36	Mimic catechins to develop selective MMP-2 inhibitors. Monatshefte Für Chemie, 2018, 149, 1293-1300.	0.9	3

#	Article	IF	CITATIONS
37	Effects of Biphenyl Sulfonylamino Methyl Bisphosphonic Acids on Porphyromonas Gingivalis and Cytokine Secretion by Oral Epithelial Cells. Medicinal Chemistry, 2013, 9, 855-860.	0.7	3
38	Broad-Spectrum Activity of Small Molecules Acting against Influenza a Virus: Biological and Computational Studies. Pharmaceuticals, 2022, 15, 301.	1.7	3
39	Bone-Seeking Matrix Metalloproteinase Inhibitors for the Treatment of Skeletal Malignancy. Pharmaceuticals, 2020, 13, 113.	1.7	2
40	Het(aryl)isatin to het(aryl)aminoindoline scaffold hopping: A route to selective inhibitors of matrix metalloproteinases. Arabian Journal of Chemistry, 2022, 15, 103492.	2.3	2
41	(2-Aminobenzothiazole)-Methyl-1,1-Bisphosphonic Acids: Targeting Matrix Metalloproteinase 13 Inhibition to the Bone. Pharmaceuticals, 2021, 14, 85.	1.7	1