
Alexander W Gundlach-Graham

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9482450/publications.pdf

Version: 2024-02-01

 $\mathsf{ALEXANDER}\,\mathsf{W}$

#	Article	IF	CITATIONS
1	Quantification and classification of engineered, incidental, and natural cerium-containing particles by spICP-TOFMS. Environmental Science: Nano, 2022, 9, 1627-1638.	4.3	10
2	Evolution of structure and transport properties of the Ba8Cu16P30 clathrate-I framework with the introduction of Ga. Applied Physics Letters, 2022, 120, .	3.3	2
3	Online microdroplet calibration for accurate nanoparticle quantification in organic matrices. Analytical and Bioanalytical Chemistry, 2022, 414, 7543-7551.	3.7	15
4	Emerging investigator series: automated single-nanoparticle quantification and classification: a holistic study of particles into and out of wastewater treatment plants in Switzerland. Environmental Science: Nano, 2021, 8, 1211-1225.	4.3	19
5	Multiplexed and multi-metal single-particle characterization with ICP-TOFMS. Comprehensive Analytical Chemistry, 2021, 93, 69-101.	1.3	12
6	Quantification and Clustering of Inorganic Nanoparticles in Wastewater Treatment Plants across Switzerland. Chimia, 2021, 75, 642.	0.6	1
7	Monodisperse microdroplets: a tool that advances single-particle ICP-MS measurements. Journal of Analytical Atomic Spectrometry, 2020, 35, 1727-1739.	3.0	33
8	Incorporating a Student-Centered Approach with Collaborative Learning into Methods in Quantitative Element Analysis. Journal of Chemical Education, 2020, 97, 3617-3623.	2.3	8
9	Performance of sp-ICP-TOFMS with signal distributions fitted to a compound Poisson model. Journal of Analytical Atomic Spectrometry, 2019, 34, 1900-1909.	3.0	38
10	Single-particle ICP-MS with online microdroplet calibration: toward matrix independent nanoparticle sizing. Journal of Analytical Atomic Spectrometry, 2019, 34, 716-728.	3.0	48
11	Characterization of inductively coupled plasma time-of-flight mass spectrometry in combination with collision/reaction cell technology – insights from highly time-resolved measurements. Journal of Analytical Atomic Spectrometry, 2019, 34, 135-146.	3.0	18
12	Single-particle ICP-TOFMS with online microdroplet calibration for the simultaneous quantification of diverse nanoparticles in complex matrices. Environmental Science: Nano, 2019, 6, 3349-3358.	4.3	26
13	Monte Carlo Simulation of Low-Count Signals in Time-of-Flight Mass Spectrometry and Its Application to Single-Particle Detection. Analytical Chemistry, 2018, 90, 11847-11855.	6.5	53
14	Replacing the Argon ICP: Nitrogen Microwave Inductively Coupled Atmospheric-Pressure Plasma (MICAP) for Mass Spectrometry. Analytical Chemistry, 2018, 90, 13443-13450.	6.5	19
15	Highâ€resolution, Quantitative Element Imaging of an Upper Crust, Lowâ€angle Cataclasite (Zuccale Fault,) Tj and Geoanalytical Research, 2018, 42, 559-574.	ETQq1 1 0 3.1	.784314 rgB 29
16	Analysis of Inorganic Nanoparticles by Single-particle Inductively Coupled Plasma Time-of-Flight Mass Spectrometry. Chimia, 2018, 72, 221.	0.6	32
17	Single-particle multi-element fingerprinting (spMEF) using inductively-coupled plasma time-of-flight mass spectrometry (ICP-TOFMS) to identify engineered nanoparticles against the elevated natural background in soils. Environmental Science: Nano, 2017, 4, 307-314.	4.3	128
18	Characterization of a new ICP-TOFMS instrument with continuous and discrete introduction of solutions. Journal of Analytical Atomic Spectrometry, 2017, 32, 548-561.	3.0	117

ALEXANDER W

#	Article	IF	CITATIONS
19	Capabilities of laser ablation inductively coupled plasma time-of-flight mass spectrometry. Journal of Analytical Atomic Spectrometry, 2017, 32, 1946-1959.	3.0	49
20	Demonstrating Rapid Qualitative Elemental Analyses of Participant-Supplied Objects at a Public Outreach Event. Journal of Chemical Education, 2016, 93, 1749-1753.	2.3	9
21	Distance-of-Flight Mass Spectrometry: What, Why, and How?. Journal of the American Society for Mass Spectrometry, 2016, 27, 1772-1786.	2.8	3
22	Toward faster and higher resolution LA–ICPMS imaging: on the co-evolution of LA cell design and ICPMS instrumentation. Analytical and Bioanalytical Chemistry, 2016, 408, 2687-2695.	3.7	72
23	Distance-of-Flight Mass Spectrometry with IonCCD Detection and an Inductively Coupled Plasma Source. Journal of the American Society for Mass Spectrometry, 2016, 27, 371-379.	2.8	7
24	Effect of Response Factor Variations on the Response Distribution of Complex Mixtures. European Journal of Mass Spectrometry, 2015, 21, 471-479.	1.0	6
25	High-Speed, High-Resolution, Multielemental Laser Ablation-Inductively Coupled Plasma-Time-of-Flight Mass Spectrometry Imaging: Part I. Instrumentation and Two-Dimensional Imaging of Geological Samples. Analytical Chemistry, 2015, 87, 8250-8258.	6.5	76
26	High-Speed, High-Resolution, Multielemental LA-ICP-TOFMS Imaging: Part II. Critical Evaluation of Quantitative Three-Dimensional Imaging of Major, Minor, and Trace Elements in Geological Samples. Analytical Chemistry, 2015, 87, 8259-8267.	6.5	70
27	Laser-ablation sampling for inductively coupled plasma distance-of-flight mass spectrometry. Journal of Analytical Atomic Spectrometry, 2015, 30, 139-147.	3.0	13
28	Zoom-TOFMS: addition of a constant-momentum-acceleration "zoom―mode to time-of-flight mass spectrometry. Analytical and Bioanalytical Chemistry, 2014, 406, 7419-7430.	3.7	5
29	First inductively coupled plasma-distance-of-flight mass spectrometer: instrument performance with a microchannel plate/phosphor imaging detector. Journal of Analytical Atomic Spectrometry, 2013, 28, 1385.	3.0	11
30	Constant-Momentum Acceleration Time-of-Flight Mass Spectrometry with Energy Focusing. Journal of the American Society for Mass Spectrometry, 2013, 24, 1853-1861.	2.8	8
31	How Constant Momentum Acceleration Decouples Energy and Space Focusing in Distance–of–Flight and Time–of–Flight Mass Spectrometries. Journal of the American Society for Mass Spectrometry, 2013, 24, 690-700.	2.8	13
32	Interleaved Distance-of-Flight Mass Spectrometry: A Simple Method to Improve the Instrument Duty Factor. Journal of the American Society for Mass Spectrometry, 2013, 24, 1736-1744.	2.8	6
33	Distance-of-Flight Mass Spectrometry: A New Paradigm for Mass Separation and Detection. Annual Review of Analytical Chemistry, 2012, 5, 487-504.	5.4	16
34	Extension of the focusable mass range in distanceâ€ofâ€flight mass spectrometry with multiple detectors. Rapid Communications in Mass Spectrometry, 2012, 26, 2526-2534.	1.5	10
35	Resolution and Mass Range Performance in Distance-of-Flight Mass Spectrometry with a Multichannel Focal-Plane Camera Detector. Analytical Chemistry, 2011, 83, 8552-8559.	6.5	19
36	First Distance-of-Flight Instrument: Opening a New Paradigm in Mass Spectrometry. Journal of the American Society for Mass Spectrometry, 2011, 22, 110-117.	2.8	22