
Jincheng Du

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9482036/publications.pdf Version: 2024-02-01

INCHENC DU

#	Article	IF	CITATIONS
1	Lanthanide doped fluorosilicate glass-ceramics: A review on experimental and theoretical progresses. Journal of Rare Earths, 2022, 40, 169-192.	2.5	22
2	Structures of Vanadium-Containing Silicate and Borosilicate Glasses: Vanadium Potential Development and MD Simulations. Journal of Non-Crystalline Solids, 2022, 575, 121223.	1.5	7
3	Experimental characterizations and molecular dynamics simulations of the structures of lead aluminosilicate glasses. Journal of Non-Crystalline Solids, 2022, 576, 121252.	1.5	11
4	Structural features and rare earth ion clustering behavior in lanthanum phosphate and aluminophosphate glasses from molecular dynamics simulations. Journal of Non-Crystalline Solids, 2022, 578, 121330.	1.5	9
5	Atomistic Understanding of Ion Exchange Strengthening of Boroaluminosilicate Glasses: Insights from Molecular Dynamics Simulations and QSPR Analysis. Journal of Physical Chemistry B, 2022, 126, 2060-2072.	1.2	5
6	Development of a force field for modeling lithium borosilicate glasses. International Journal of Applied Glass Science, 2022, 13, 444-456.	1.0	7
7	Effect of boron oxide on mechanical and thermal properties of bioactive glass coatings for biomedical applications. Journal of the American Ceramic Society, 2022, 105, 3986-4008.	1.9	8
8	A critical evaluation of barium silicate glass network polymerization. Journal of Non-Crystalline Solids, 2022, 583, 121477.	1.5	12
9	Surface Micron-Structure Engineering of Halide Perovskite Doped Glass-Ceramic and Its Ionic Transport Application. ACS Applied Energy Materials, 2022, 5, 42-51.	2.5	4
10	Influence of interatomic potential and simulation procedures on the structures and properties of sodium aluminosilicate glasses from molecular dynamics simulations. Journal of Non-Crystalline Solids, 2022, 588, 121639.	1.5	7
11	Elucidating the Atomic Structures of the Gel Layer Formed during Aluminoborosilicate Glass Dissolution: An Integrated Experimental and Simulation Study. Journal of Physical Chemistry C, 2022, 126, 7999-8015.	1.5	4
12	The Transformation from Translucent into Transparent Rare Earth Ions Doped Oxyfluoride Glass eramics with Enhanced Luminescence. Advanced Optical Materials, 2022, 10, .	3.6	15
13	Development of potentials for molecular dynamics simulations of dry and hydrated calcium aluminosilicate glasses by force matching and refinement. Journal of Non-Crystalline Solids, 2022, 592, 121746.	1.5	4
14	Composition Dependence of the Atomic Structures and Properties of Sodium Aluminosilicate Glasses: Molecular Dynamics Simulations with Reactive and Nonreactive Potentials. Journal of Physical Chemistry B, 2022, 126, 5326-5342.	1.2	9
15	Effect of modifier cation field strength on the structures of magnesium oxide containing aluminoborosilicate glasses. International Journal of Applied Glass Science, 2022, 13, 554-567.	1.0	9
16	Glass-ceramic phosphors for solid state lighting: A review. Ceramics International, 2021, 47, 2963-2980.	2.3	59
17	Patchy particle model of hydrated amorphous silica. Journal of Non-Crystalline Solids, 2021, 556, 120555.	1.5	3
18	A comparative study of the effectiveness of empirical potentials for molecular dynamics simulations of borosilicate glasses. Journal of Non-Crystalline Solids, 2021, 553, 120413.	1.5	21

#	Article	IF	CITATIONS
19	Atomic and microâ€structure features of nanoporous aluminosilicate glasses from reactive molecular dynamics simulations. Journal of the American Ceramic Society, 2021, 104, 229-242.	1.9	17
20	Predicting boron coordination in multicomponent borate and borosilicate glasses using analytical models and machine learning. Journal of Non-Crystalline Solids, 2021, 553, 120490.	1.5	26
21	Effects of Al:Si and (AlÂ+ÂNa):Si ratios on the properties of the international simple glass, part II: Structure. Journal of the American Ceramic Society, 2021, 104, 183-207.	1.9	29
22	A modified random network model for P ₂ O ₅ –Na ₂ O–Al ₂ O ₃ –SiO ₂ glass studied by molecular dynamics simulations. RSC Advances, 2021, 11, 7025-7036.	1.7	15
23	In situ pair distribution function analysis of crystallizing Fe-silicate melts. Journal of Materials Science, 2021, 56, 5637-5657.	1.7	10
24	Ion-exchange mechanisms and interfacial reaction kinetics during aqueous corrosion of sodium silicate glasses. Npj Materials Degradation, 2021, 5, .	2.6	16
25	Modeling the Structure and Dynamics of Lithium Borosilicate Glasses with Ab Initio Molecular Dynamics Simulations. Journal of Physical Chemistry C, 2021, 125, 8080-8089.	1.5	17
26	Predicting the dissolution rate of borosilicate glasses using QSPR analysis based on molecular dynamics simulations. Journal of the American Ceramic Society, 2021, 104, 4445-4458.	1.9	18
27	Recent Advances in Corrosion Science Applicable To Disposal of High-Level Nuclear Waste. Chemical Reviews, 2021, 121, 12327-12383.	23.0	52
28	Borosilicate Glasses. , 2021, , 519-539.		6
29	Vanadium Oxidation States and Structural Role in Aluminoborosilicate Glasses: An Integrated Experimental and Molecular Dynamics Simulation Study. Journal of Physical Chemistry B, 2021, 125, 12365-12377.	1.2	8
30	Structural features of sodium silicate glasses from reactive force fieldâ€based molecular dynamics simulations. Journal of the American Ceramic Society, 2020, 103, 1600-1614.	1.9	23
31	Ionic self-diffusion of Na2O–Al2O3–SiO2 glasses from molecular dynamics simulations. Journal of Non-Crystalline Solids, 2020, 527, 119734.	1.5	24
32	Quantitative structure-property relationship (QSPR) analysis of calcium aluminosilicate glasses based on molecular dynamics simulations. Journal of Non-Crystalline Solids, 2020, 530, 119772.	1.5	29
33	Structures of fluoride containing aluminosilicate low activity nuclear waste glasses: A molecular dynamics simulations study. Journal of Non-Crystalline Solids, 2020, 550, 120379.	1.5	4
34	Reply to: How much does corrosion of nuclear waste matrices matter. Nature Materials, 2020, 19, 962-963.	13.3	7
35	Investigation of thermal transport properties in pillared-graphene structure using nonequilibrium molecular dynamics simulations. MRS Communications, 2020, 10, 506-511.	0.8	2
36	Temperature dependent molecular fluorescence of [Agm]n+ quantum clusters stabilized by phosphate glass networks. Physical Chemistry Chemical Physics, 2020, 22, 21307-21316.	1.3	7

#	Article	IF	CITATIONS
37	Insights into the mechanisms controlling the residual corrosion rate of borosilicate glasses. Npj Materials Degradation, 2020, 4, .	2.6	26
38	Influence of O(³ P)/O ₂ Flux on the Atomic Layer Deposition of B ₂ O ₃ Using Trimethyl Borate at Room Temperature. Journal of Physical Chemistry C, 2020, 124, 25846-25858.	1.5	4
39	Ca ²⁺ /Sr ²⁺ /Ba ²⁺ dependent phase separation, nanocrystallization and photoluminescence in fluoroaluminosilicate glass. Journal of the American Ceramic Society, 2020, 103, 5796-5807.	1.9	14
40	Thermal transport properties enhancement of paraffin via encapsulation into boron nitride nanotube: a molecular dynamics study. MRS Communications, 2020, 10, 475-481.	0.8	7
41	Hydrogen bonding interactions of H2O and SiOH on a boroaluminosilicate glass corroded in aqueous solution. Npj Materials Degradation, 2020, 4, .	2.6	64
42	Hydration and reaction mechanisms on sodium silicate glass surfaces from molecular dynamics simulations with reactive force fields. Journal of the American Ceramic Society, 2020, 103, 3676-3690.	1.9	21
43	Searching for correlations between vibrational spectral features and structural parameters of silicate glass network. Journal of the American Ceramic Society, 2020, 103, 3575-3589.	1.9	43
44	Self-accelerated corrosion of nuclear waste forms at material interfaces. Nature Materials, 2020, 19, 310-316.	13.3	61
45	Tomographic mapping of the nanoscale water-filled pore structure in corroded borosilicate glass. Npj Materials Degradation, 2020, 4, .	2.6	29
46	Can a simple topological-constraints-based model predict the initial dissolution rate of borosilicate and aluminosilicate glasses?. Npj Materials Degradation, 2020, 4, .	2.6	26
47	Investigation of thermal transport properties of copper-supported pillared-graphene structure using molecular dynamics simulations. MRS Communications, 2020, 10, 695-701.	0.8	1
48	Local ordering and interfacial structure between spinel crystal and aluminosilicate glasses from molecular dynamics simulations. International Journal of Applied Glass Science, 2019, 10, 41-56.	1.0	11
49	Effects of surface initial condition on aqueous corrosion of glass—A study with a model nuclear waste glass. Journal of the American Ceramic Society, 2019, 102, 1652-1664.	1.9	26
50	Investigation of the structural environment and chemical bonding of fluorine in Yb-doped fluorosilicate glass optical fibres. Journal of Chemical Thermodynamics, 2019, 128, 119-126.	1.0	11
51	Reaction Mechanisms and Interfacial Behaviors of Sodium Silicate Glass in an Aqueous Environment from Reactive Force Field-Based Molecular Dynamics Simulations. Journal of Physical Chemistry C, 2019, 123, 21538-21547.	1.5	26
52	A structure model for phase separated fluoroaluminosilicate glass system by molecular dynamic simulations. Journal of the European Ceramic Society, 2019, 39, 5018-5029.	2.8	28
53	Assessment of interatomic parameters for the reproduction of borosilicate glass structures via DFTâ€GIPAW calculations. Journal of the American Ceramic Society, 2019, 102, 7225-7243.	1.9	34
54	Structural Origins of BaF 2 /Ba 1 â^' x R x F 2 + x /RF 3 Nanocrystals Formation from Phase Separated Fluoroaluminosilicate Glass: A Molecular Dynamic Simulation Study. Advanced Theory and Simulations, 2019, 2, 1900062.	1.3	5

#	Article	IF	CITATIONS
55	Lithium Ion Diffusion Mechanism and Associated Defect Behaviors in Crystalline Li1+xAlxGe2–x(PO4)3 Solid-State Electrolytes. Journal of Physical Chemistry C, 2019, 123, 27385-27398.	1.5	30
56	Crystallization behavior of Li1+xAlxGe2-x(PO4)3 glass-ceramics: Effect of composition and thermal treatment. Journal of Non-Crystalline Solids, 2019, 525, 119680.	1.5	6
57	Bioactive glass coatings on metallic implants for biomedical applications. Bioactive Materials, 2019, 4, 261-270.	8.6	130
58	Monte Carlo simulation of borosilicate glass dissolution using molecular dynamics-generated glass structures. Journal of Non-Crystalline Solids, 2019, 522, 119601.	1.5	18
59	Effect of vanadium oxide addition on thermomechanical behaviors of borosilicate glasses: Toward development of high crack resistant glasses for nuclear waste disposal. Journal of Non-Crystalline Solids, 2019, 515, 88-97.	1.5	20
60	Effect of solution condition on hydroxyapatite formation in evaluating bioactivity of B2O3 containing 45S5 bioactive glasses. Bioactive Materials, 2019, 4, 207-214.	8.6	41
61	Development of Water Reactive Potentials for Sodium Silicate Glasses. Journal of Physical Chemistry B, 2019, 123, 4452-4461.	1.2	27
62	Stabilization of Fluorescent [Ag _{<i>m</i>}] ^{<i>n</i>+} Quantum Clusters in Multiphase Inorganic Glass-Ceramics for White LEDs. ACS Applied Nano Materials, 2019, 2, 2854-2863.	2.4	24
63	Structural Origins of RF ₃ /NaRF ₄ Nanocrystal Precipitation from Phase-Separated SiO ₂ –Al ₂ O ₃ –RF ₃ –NaF Glasses: A Molecular Dynamics Simulation Study. Journal of Physical Chemistry B, 2019, 123, 3024-3032.	1.2	22
64	Physical and optical properties of the International Simple Glass. Npj Materials Degradation, 2019, 3, .	2.6	37
65	Enhanced single-mode fiber laser emission by nano-crystallization of oxyfluoride glass-ceramic cores. Journal of Materials Chemistry C, 2019, 7, 5155-5162.	2.7	31
66	Interfacial structures of spinel crystals with borosilicate nuclear waste glasses from molecular dynamics simulations. Journal of the American Ceramic Society, 2019, 102, 4583-4601.	1.9	11
67	Laser coating of bioactive glasses on bioimplant titanium alloys. International Journal of Applied Glass Science, 2019, 10, 307-320.	1.0	26
68	Development of boron oxide potentials for computer simulations of multicomponent oxide glasses. Journal of the American Ceramic Society, 2019, 102, 2482-2505.	1.9	124
69	Structural features of ISG borosilicate nuclear waste glasses revealed from high-energy X-ray diffraction and molecular dynamics simulations. Journal of Nuclear Materials, 2019, 515, 284-293.	1.3	33
70	Composition – structure – property relationships in alkali aluminosilicate glasses: A combined experimental – computational approach towards designing functional glasses. Journal of Non-Crystalline Solids, 2019, 505, 144-153.	1.5	48
71	Quantitative Structure–Property Relationship (QSPR) Analysis of ZrO ₂ -Containing Soda-Lime Borosilicate Glasses. Journal of Physical Chemistry B, 2019, 123, 1412-1422.	1.2	41
72	Molecular Dynamics Simulations of Oxide Glasses. Springer Handbooks, 2019, , 1131-1155.	0.3	12

#	Article	IF	CITATIONS
73	Short and medium range structures of 80GeSe ₂ a€"20Ga ₂ Se ₃ chalcogenide glasses. Journal of Physics Condensed Matter, 2018, 30, 185403.	0.7	5
74	Evaluating Water Reactivity at Silica Surfaces Using Reactive Potentials. Journal of Physical Chemistry C, 2018, 122, 9875-9885.	1.5	35
75	Mixed Network Former Effect on Structure, Physical Properties, and Bioactivity of 45S5 Bioactive Glasses: An Integrated Experimental and Molecular Dynamics Simulation Study. Journal of Physical Chemistry B, 2018, 122, 2564-2577.	1.2	34
76	Structure of International Simple Class and properties of passivating layer formed in circumneutral pH conditions. Npj Materials Degradation, 2018, 2, .	2.6	91
77	Effects of system size and cooling rate on the structure and properties of sodium borosilicate glasses from molecular dynamics simulations. Journal of Chemical Physics, 2018, 148, 024504.	1.2	75
78	A comparative review of the aqueous corrosion of glasses, crystalline ceramics, and metals. Npj Materials Degradation, 2018, 2, .	2.6	150
79	Effect of ZrO2 on the structure and properties of soda-lime silicate glasses from molecular dynamics simulations. Journal of Non-Crystalline Solids, 2018, 491, 141-150.	1.5	51
80	Interface structures of ZnO/MoO3 and their effect on workfunction of ZnO surfaces from first principles calculations. Computational Materials Science, 2018, 141, 162-169.	1.4	10
81	Understanding the structural drivers governing glass–water interactions in borosilicate based model bioactive glasses. Acta Biomaterialia, 2018, 65, 436-449.	4.1	43
82	Simplifying a solution to a complex puzzle. Npj Materials Degradation, 2018, 2, .	2.6	6
83	Nanoporous silica gel structures and evolution from reactive force field-based molecular dynamics simulations. Npj Materials Degradation, 2018, 2, .	2.6	34
84	Phaseâ€Selective Nanocrystallization of NaLnF ₄ in Aluminosilicate Glass for Random Laser and 940 nm LEDâ€Excitable Upconverted Luminescence. Laser and Photonics Reviews, 2018, 12, 1800030.	4.4	94
85	High temperature water as a clean and etch of low-k and SiO2 films. Microelectronic Engineering, 2018, 196, 54-58.	1.1	2
86	B ₂ O ₃ /SiO ₂ substitution effect on structure and properties of Na ₂ O–CaO–SrO–P ₂ O ₅ –SiO ₂ bioactive glasses from molecular dynamics simulations. Physical Chemistry Chemical Physics, 2018, 20, 14090-14104.	1.3	47
87	Dynamics of self-reorganization explains passivation of silicate glasses. Nature Communications, 2018, 9, 2169.	5.8	94
88	Molecular Dynamics Simulations of Water Structure and Diffusion in a 1 nm Diameter Silica Nanopore as a Function of Surface Charge and Alkali Metal Counterion Identity. Journal of Physical Chemistry C, 2018, 122, 17764-17776.	1.5	47
89	Structural role of ZrO2 and its impact on properties of boroaluminosilicate nuclear waste glasses. Npj Materials Degradation, 2018, 2, .	2.6	41
90	Pushing the limits of sensitivity and resolution for natural abundance ⁴³ Ca NMR using ultra-high magnetic field (35.2 T). Chemical Communications, 2018, 54, 9591-9594.	2.2	22

#	ARTICLE	IF	CITATIONS
91	Development of a ReaxFF Reactive Force Field for NaSiO <i>_x</i> /Water Systems and Its Application to Sodium and Proton Self-Diffusion. Journal of Physical Chemistry C, 2018, 122, 19613-19624.	1.5	63
92	Thermal conductivity of vitreous silica from molecular dynamics simulations: The effects of force field, heat flux and system size. Journal of Chemical Physics, 2017, 146, 054504.	1.2	14
93	Effects of boron oxide substitution on the structure and bioactivity of SrO-containing bioactive glasses. Journal of Materials Science, 2017, 52, 8793-8811.	1.7	40
94	Interfacial Structure and Evolution of the Water–Silica Gel System by Reactive Force-Field-Based Molecular Dynamics Simulations. Journal of Physical Chemistry C, 2017, 121, 11534-11543.	1.5	50
95	Stabilization of ultra-small [Ag ₂] ²⁺ and [Ag _m] ⁿ⁺ nano-clusters through negatively charged tetrahedrons in oxyfluoride glass networks: To largely enhance the luminescence quantum yields. Physical Chemistry Chemical Physics, 2017, 19, 22638-22645.	1.3	22
96	Mechanisms of AZO workfunction tuning for anode use in OLEDs: Surface dipole manipulation with plasma treatments versus nanoscale WOx and VOx interfacial layers. Journal of Applied Physics, 2017, 121, .	1.1	10
97	Surface structures of sodium borosilicate glasses from molecular dynamics simulations. Journal of the American Ceramic Society, 2017, 100, 2516-2524.	1.9	27
98	Composite reinforcement: Recent development of continuous glass fibers. International Journal of Applied Glass Science, 2017, 8, 23-36.	1.0	31
99	Bulk, surface structures and properties of sodium borosilicate and boroaluminosilicate nuclear waste glasses from molecular dynamics simulations. Journal of Non-Crystalline Solids, 2017, 476, 87-94.	1.5	44
100	Effects of optical dopants and laser wavelength on atom probe tomography analyses of borosilicate glasses. Journal of the American Ceramic Society, 2017, 100, 4801-4815.	1.9	18
101	The structural and electronic properties of reduced amorphous titania. Physical Chemistry Chemical Physics, 2017, 19, 18671-18684.	1.3	31
102	Structural stability, electronic and thermodynamic properties of VOPO4 polymorphs from DFT+U calculations. Computational Materials Science, 2017, 126, 326-335.	1.4	10
103	Atomistic computer simulations of water interactions and dissolution of inorganic glasses. Npj Materials Degradation, 2017, 1, .	2.6	51
104	Structural Origin of the Thermal and Diffusion Behaviors of Lithium Aluminosilicate Crystal Polymorphs and Glasses. Journal of the American Ceramic Society, 2016, 99, 2823-2833.	1.9	33
105	Structure, energetics, and electronic properties of stacking fault defects in ilmenite-structured ZnTiO ₃ . Modelling and Simulation in Materials Science and Engineering, 2016, 24, 065015.	0.8	1
106	Local structure, composition, and crystallization mechanism of a model two-phase "composite nanoglass― Journal of Chemical Physics, 2016, 144, 064503.	1.2	3
107	Influence of low concentration V and Co oxide doping on the dissolution behaviors of simplified nuclear waste glasses. Journal of Non-Crystalline Solids, 2016, 452, 161-168.	1.5	15
108	Development of effective empirical potentials for molecular dynamics simulations of the structures and properties of boroaluminosilicate glasses. Journal of Non-Crystalline Solids, 2016, 453, 177-194.	1.5	82

#	Article	IF	CITATIONS
109	From Phase Separation to Nanocrystallization in Fluorosilicate Glasses: Structural Design of Highly Luminescent Glass-Ceramics. Journal of Physical Chemistry C, 2016, 120, 17726-17732.	1.5	63
110	Water Interactions with Nanoporous Silica: Comparison of ReaxFF and <i>ab Initio</i> based Molecular Dynamics Simulations. Journal of Physical Chemistry C, 2016, 120, 24803-24816.	1.5	94
111	Electro-optical performance of molybdenum oxide modified aluminum doped zinc oxide anodes in organic light emitting diodes: A comparison to indium tin oxide. Materials Express, 2016, 6, 289-294.	0.2	4
112	UV-induced modification of fused silica: Insights from ReaxFF-based molecular dynamics simulations. AIP Advances, 2016, 6, 095312.	0.6	9
113	Molecular dynamics simulations of nanoporous organosilicate glasses using Reactive Force Field (ReaxFF). Journal of Non-Crystalline Solids, 2016, 431, 103-111.	1.5	30
114	Non-bridging oxygen dependent redox and spectroscopic properties of Cu species in phosphosilicate glasses. Journal of Alloys and Compounds, 2016, 664, 331-337.	2.8	16
115	First-principles study on the adsorption and dissociation of H2 molecules on Be(0 0 0 1) surfaces. Computational Materials Science, 2016, 117, 251-258.	1.4	6
116	Eu2+ promoted formation of molecule-like Ag and enhanced white luminescence of Ag/Eu-codoped oxyfluoride glasses. Journal of Non-Crystalline Solids, 2016, 432, 348-353.	1.5	29
117	Investigating the structure–diffusion–bioactivity relationship of strontium containing bioactive glasses using molecular dynamics based computer simulations. Journal of Non-Crystalline Solids, 2016, 432, 35-40.	1.5	22
118	Chemical bonding in carborane/aromatic co-polymers: a first-principles analysis of experimental photoemission spectra. Molecular Simulation, 2016, 42, 39-46.	0.9	5
119	<i>Ab initio</i> Molecular Dynamics Simulations of the Hydroxylation of Nanoporous Silica. Journal of the American Ceramic Society, 2015, 98, 3748-3757.	1.9	34
120	Ab initio study of intrinsic defects and diffusion behaviors in solid molecular hydrogens. European Physical Journal B, 2015, 88, 1.	0.6	1
121	Understanding the composition–structure–bioactivity relationships in diopside (CaO·MgO·2SiO2)–tricalcium phosphate (3CaO·P2O5) glass system. Acta Biomaterialia, 2015, 15, 210-226	.4.1	34
122	Ab initio study of structural and mechanical property of solid molecular hydrogens. European Physical Journal B, 2015, 88, 1.	0.6	5
123	Challenges in Molecular Dynamics Simulations of Multicomponent Oxide Glasses. Springer Series in Materials Science, 2015, , 157-180.	0.4	47
124	Effect of surface adsorption and non-stoichiometry on the workfunction of ZnO surfaces: A first principles study. Journal of Applied Physics, 2015, 117, 165304.	1.1	9
125	The influence of MoOx gap states on hole injection from aluminum doped zinc oxide with nanoscale MoOx surface layer anodes for organic light emitting diodes. Journal of Applied Physics, 2015, 118, .	1.1	11
126	Surface reactions and structural evolution of organosilicate glass under Ar plasma bombardment. Computational Materials Science, 2015, 110, 287-294.	1.4	9

#	Article	IF	CITATIONS
127	Lithium Ion Diffusion Mechanism in Lithium Lanthanum Titanate Solidâ€State Electrolytes from Atomistic Simulations. Journal of the American Ceramic Society, 2015, 98, 534-542.	1.9	66
128	Defect structure and chemical bonding of p-type ZnO:Sb thin films prepared by pulsed laser deposition. Semiconductor Science and Technology, 2014, 29, 115019.	1.0	11
129	Structural and Mechanical Properties of Nanoporous Silica. Journal of the American Ceramic Society, 2014, 97, 772-781.	1.9	40
130	Experimental and computational studies on stacking faults in zinc titanate. Applied Physics Letters, 2014, 104, 241903.	1.5	9
131	Semiconductor to metal transition in degenerate ZnO: Al films and the impact on its carrier scattering mechanisms and bandgap for OLED applications. Journal of Materials Science: Materials in Electronics, 2014, 25, 1492-1498.	1.1	19
132	Lithium vanado-phosphate glasses: Structure and dynamics properties studied by molecular dynamics simulations. Journal of Non-Crystalline Solids, 2014, 403, 53-61.	1.5	22
133	Spectroscopic properties of Eu-doped oxynitride glass–ceramics for white light LEDs. Journal of Non-Crystalline Solids, 2014, 406, 119-126.	1.5	9
134	Mechanisms of oxygen plasma damage of amine and methyl terminated organosilicate low- <i>k</i> dielectrics from <i>ab initio</i> molecular dynamics simulations. Journal Physics D: Applied Physics, 2014, 47, 335204.	1.3	14
135	Short- and medium-range structures of cerium aluminophosphate glasses: A molecular dynamics study. Journal of Non-Crystalline Solids, 2014, 403, 67-79.	1.5	24
136	Measurements of liquid and glass structures using aerodynamic levitation and in-situ high energy x-ray and neutron scattering. Journal of Non-Crystalline Solids, 2014, 383, 49-51.	1.5	41
137	Structure and properties of sodium aluminosilicate glasses from molecular dynamics simulations. Journal of Chemical Physics, 2013, 139, 044507.	1.2	127
138	Towards three-dimensional structural determination of amorphous materials at atomic resolution. Physical Review B, 2013, 88, .	1.1	17
139	Second harmonic generation in N-doped H : SiO2 films by poling under x-ray irradiation. Journal Physics D: Applied Physics, 2013, 46, 505102.	1.3	2
140	Novel alloy polymers formed from <i>ortho</i> -carborane and benzene or pyridine. Journal of Physics Condensed Matter, 2013, 25, 105801.	0.7	15
141	Structure and diffusion of ZnO–SrO–CaO–Na2O–SiO2 bioactive glasses: a combined high energy X-ray diffraction and molecular dynamics simulations study. RSC Advances, 2013, 3, 5966.	1.7	28
142	Origin of thermally induced second harmonic generation in PbO–B_2O_3 glasses. Optics Letters, 2012, 37, 860.	1.7	4
143	Rare earth ion clustering behavior in europium doped silicate glasses: Simulation size and glass structure effect. Journal of Non-Crystalline Solids, 2012, 358, 3408-3417.	1.5	52
144	⁸⁷ Sr Solid-State NMR as a Structurally Sensitive Tool for the Investigation of Materials: Antiosteoporotic Pharmaceuticals and Bioactive Glasses. Journal of the American Chemical Society, 2012, 134, 12611-12628.	6.6	68

#	Article	IF	CITATIONS
145	Effect of strontium substitution on the structure, ionic diffusion and dynamic properties of 45S5 Bioactive glasses. Journal of Non-Crystalline Solids, 2012, 358, 1059-1071.	1.5	85
146	First-principles calculations of the electronic structure, phase transition and properties of ZrSiO4 polymorphs. Computational and Theoretical Chemistry, 2012, 987, 62-70.	1.1	23
147	Achieving long time scale simulations of glass-forming systems. Computational and Theoretical Chemistry, 2012, 987, 122-133.	1.1	10
148	Structure and lithium ion diffusion in lithium silicate glasses and at their interfaces with lithium lanthanum titanate crystals. Journal of Non-Crystalline Solids, 2012, 358, 3531-3538.	1.5	19
149	Workfunction tuning of zinc oxide films by argon sputtering and oxygen plasma: an experimental and computational study. Journal Physics D: Applied Physics, 2012, 45, 065301.	1.3	57
150	Effect of Strontium Substitution on the Structure of 45S5 Bioglasses. Chemistry of Materials, 2011, 23, 2703-2717.	3.2	135
151	Europium environment and clustering in europium doped silica and sodium silicate glasses. Journal of Non-Crystalline Solids, 2011, 357, 2235-2240.	1.5	29
152	Structure of Cerium Phosphate Glasses: Molecular Dynamics Simulation. Journal of the American Ceramic Society, 2011, 94, 2393-2401.	1.9	84
153	Local Structure of Cerium in Aluminophosphate and Silicophosphate Glasses. Journal of the American Ceramic Society, 2011, 94, 2442-2451.	1.9	31
154	Reaction mechanisms of thermal atomic oxygen interaction with organosilicate low k dielectric materials from <i>ab initio</i> molecular dynamics simulations. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 2011, 29, .	0.9	10
155	Three-dimensional structure determination from a single view. Nature, 2010, 463, 214-217.	13.7	153
156	Electronic structure and interfacial properties of Ge nanoclusters embedded in amorphous silica. Journal of Non-Crystalline Solids, 2010, 356, 2448-2453.	1.5	11
157	First-Principles-Based Kinetic Monte Carlo Simulation of Nitric Oxide Reduction over Platinum Nanoparticles under Lean-Burn Conditions. Industrial & Engineering Chemistry Research, 2010, 49, 10364-10373.	1.8	36
158	Templated Growth of Hexagonal Nickel Carbide Nanocrystals on Vertically Aligned Carbon Nanotubes. Journal of Physical Chemistry C, 2010, 114, 10424-10429.	1.5	24
159	Molecular Dynamics Simulations of Displacement Cascades in Single and Polycrystalline Zirconia. , 2009, , .		0
160	Fundamental mechanisms of oxygen plasma-induced damage of ultralow-k organosilicate materials: The role of thermal P3 atomic oxygen. Applied Physics Letters, 2009, 94, 204102.	1.5	43
161	Molecular Dynamics Simulations of the Structure and Properties of Low Silica Yttrium Aluminosilicate Glasses. Journal of the American Ceramic Society, 2009, 92, 87-95.	1.9	86
162	A molecular dynamics simulation interpretation of neutron and x-ray diffraction measurements on single phase Y ₂ O ₃ –Al ₂ O ₃ glasses. Journal of Physics Condensed Matter, 2009, 21, 205102.	0.7	74

#	Article	IF	CITATIONS
163	Understanding lanthanum aluminate glass structure by correlating molecular dynamics simulation results with neutron and X-ray scattering data. Journal of Non-Crystalline Solids, 2007, 353, 210-214.	1.5	36
164	Structure, dynamics, and electronic properties of lithium disilicate melt and glass. Journal of Chemical Physics, 2006, 125, 114702.	1.2	73
165	Characterization of the Structural and Electronic Properties of Crystalline Lithium Silicates. Journal of Physical Chemistry B, 2006, 110, 22346-22352.	1.2	56
166	Compositional dependence of the first sharp diffraction peaks in alkali silicate glasses: A molecular dynamics study. Journal of Non-Crystalline Solids, 2006, 352, 3255-3269.	1.5	128
167	Characterization of Ion Distributions Near the Surface of Sodium-Containing and Sodium-Depleted Calcium Aluminosilicate Melts. Journal of the American Ceramic Society, 2006, 89, 36-41.	1.9	20
168	Short- and medium-range structure of amorphous zircon from molecular dynamics simulations. Physical Review B, 2006, 74, .	1.1	29
169	Molecular Dynamics Simulation of the Structure and Hydroxylation of Silica Glass Surfaces. Journal of the American Ceramic Society, 2005, 88, 2532-2539.	1.9	165
170	Molecular Dynamics Simulation of the Structure and Hydroxylation of Silica Glass Surfaces. Journal of the American Ceramic Society, 2005, 88, 2978-2978.	1.9	8
171	First sharp diffraction peak in silicate glasses: Structure and scattering length dependence. Physical Review B, 2005, 72, .	1.1	76
172	The structure of erbium doped sodium silicate glasses. Journal of Non-Crystalline Solids, 2005, 351, 2263-2276.	1.5	61
173	Structure study of rare earth doped vitreous silica by molecular dynamics simulation. Radiation Effects and Defects in Solids, 2002, 157, 789-794.	0.4	6
174	Molecular dynamics simulations of soda–lime–silicate glasses. Journal of Non-Crystalline Solids, 2001, 293-295, 283-289.	1.5	133
175	Title is missing!. Journal of Sol-Gel Science and Technology, 2000, 17, 163-171.	1.1	154