
Otavio Cavalett

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9481827/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Life-cycle assessment to unravel co-benefits and trade-offs of large-scale biochar deployment in Norwegian agriculture. Resources, Conservation and Recycling, 2022, 179, 106030.	5.3	22
2	Addressing the contributions of electricity from biomass in Brazil in the context of the Sustainable Development Goals using life cycle assessment methods. Journal of Industrial Ecology, 2022, 26, 980-995.	2.8	8
3	Techno-economic and environmental assessment of bioenergy and livestock integrated systems in Brazil. Sustainable Production and Consumption, 2022, 32, 580-592.	5.7	6
4	LCA and negative emission potential of retrofitted cement plants under oxyfuel conditions at high biogenic fuel shares. Scientific Reports, 2022, 12, .	1.6	8
5	Climate change mitigation of drop-in biofuels for deep-sea shipping under a prospective life-cycle assessment. Journal of Cleaner Production, 2022, 364, 132662.	4.6	20
6	Optimal combination of bioenergy and solar photovoltaic for renewable energy production on abandoned cropland. Renewable Energy, 2021, 168, 45-56.	4.3	39
7	Overview of recent landâ€cover changes in biodiversity hotspots. Frontiers in Ecology and the Environment, 2021, 19, 91-97.	1.9	36
8	The land–energy–water nexus of global bioenergy potentials from abandoned cropland. Nature Sustainability, 2021, 4, 525-536.	11.5	60
9	Identifying suitable areas for expanding sugarcane ethanol production in Brazil under conservation of environmentally relevant habitats. Journal of Cleaner Production, 2021, 292, 125318.	4.6	21
10	Towards Comparable Carbon Credits: Harmonization of LCA Models of Cellulosic Biofuels. Sustainability, 2021, 13, 10371.	1.6	8
11	Multiobjective optimization of economic and environmental performance of Fischer-Tropsch biofuels production integrated to sugarcane biorefineries. Industrial Crops and Products, 2021, 170, 113810.	2.5	10
12	Opportunities and challenges for bioenergy-livestock integrated systems in Brazil. Industrial Crops and Products, 2021, 173, 114091.	2.5	6
13	Unraveling the potential of sugarcane electricity for climate change mitigation in Brazil. Resources, Conservation and Recycling, 2021, 175, 105878.	5.3	11
14	A novel social life cycle assessment method for determining workers' human development: a case study of the sugarcane biorefineries in Brazil. International Journal of Life Cycle Assessment, 2021, 26, 2072-2084.	2.2	7
15	Advanced technologies for electricity production in the sugarcane value chain are a strategic option in a carbon reward policy context. Energy Policy, 2021, 159, 112637.	4.2	12
16	Simulating scenarios for compost and vinasse use to improve the economics and environmental aspects of representative Colombian sugarcane production systems. Renewable Agriculture and Food Systems, 2020, 35, 579-593.	0.8	1
17	Techno-Economic and Environmental Assessment of Biomass Gasification and Fischer–Tropsch Synthesis Integrated to Sugarcane Biorefineries. Energies, 2020, 13, 4576.	1.6	42
18	Sugarcane ethanol and beef cattle integration in Brazil. Biomass and Bioenergy, 2019, 120, 448-457.	2.9	34

ΟΤΑVΙΟ CAVALETT

#	Article	IF	CITATIONS
19	Asserting the climate benefits of the coal-to-gas shift across temporal and spatial scales. Nature Climate Change, 2019, 9, 389-396.	8.1	85
20	Assessment of lignocellulosic biorefineries in Germany using a hybrid LCA multiâ€objective optimization model. Journal of Industrial Ecology, 2019, 23, 1172-1185.	2.8	12
21	Environmental and economic assessment of the co-firing of the coal-bagassemixture in the Colombian sugarcane mills. Revista UIS IngenierÃas, 2019, 18, 77-88.	0.1	2
22	Social life cycle assessment of first and second-generation ethanol production technologies in Brazil. International Journal of Life Cycle Assessment, 2018, 23, 617-628.	2.2	52
23	Economic, environmental, and social impacts of different sugarcane production systems. Biofuels, Bioproducts and Biorefining, 2018, 12, 68-82.	1.9	53
24	Techno-economic and environmental assessment of renewable jet fuel production in integrated Brazilian sugarcane biorefineries. Applied Energy, 2018, 209, 290-305.	5.1	120
25	Energy and Environmental Aspects of Using Eucalyptus from Brazil for Energy and Transportation Services in Europe. Sustainability, 2018, 10, 4068.	1.6	22
26	Contribution of jet fuel from forest residues to multiple Sustainable Development Goals. Nature Sustainability, 2018, 1, 799-807.	11.5	37
27	From political to climate crisis. Nature Climate Change, 2018, 8, 663-664.	8.1	6
28	Techno-economic analysis and climate change impacts of sugarcane biorefineries considering different time horizons. Biotechnology for Biofuels, 2017, 10, 50.	6.2	113
29	Environmental impacts of technology learning curve for cellulosic ethanol in Brazil. Industrial Crops and Products, 2017, 106, 31-39.	2.5	22
30	Life Cycle Assessment of vinasse biogas production in sugarcane biorefineries. Computer Aided Chemical Engineering, 2017, , 2017-2022.	0.3	9
31	The Role of Small-Scale Biofuel Production in Brazil: Lessons for Developing Countries. Agriculture (Switzerland), 2017, 7, 61.	1.4	5
32	Environmental and economic impacts of different sugarcane production systems in the ethanol biorefinery. Biofuels, Bioproducts and Biorefining, 2016, 10, 89-106.	1.9	55
33	Enhancing life cycle impact assessment from climate science: Review of recent findings and recommendations for application to LCA. Ecological Indicators, 2016, 71, 163-174.	2.6	108
34	Life Cycle Assessment of Poly(Lactic Acid) (PLA): Comparison Between Chemical Recycling, Mechanical Recycling and Composting. Journal of Polymers and the Environment, 2016, 24, 372-384.	2.4	153
35	Bridging the gap between impact assessment methods and climate science. Environmental Science and Policy, 2016, 64, 129-140.	2.4	69
36	Hybrid Inputâ€Output Life Cycle Assessment of First―and Secondâ€Generation Ethanol Production Technologies in Brazil. Journal of Industrial Ecology, 2016, 20, 764-774.	2.8	24

ΟΤΑVΙΟ CAVALETT

#	Article	IF	CITATIONS
37	The Agricultural Production Model. Green Energy and Technology, 2016, , 13-51.	0.4	5
38	Sustainability Assessment Methodologies. Green Energy and Technology, 2016, , 155-188.	0.4	7
39	The Virtual Sugarcane Biorefinery—A Simulation Tool to Support Public Policies Formulation in Bioenergy. Industrial Biotechnology, 2016, 12, 62-67.	0.5	38
40	A vertical integration simplified model for straw recovery as feedstock in sugarcane biorefineries. Biomass and Bioenergy, 2015, 81, 216-223.	2.9	34
41	Sugarcane processing for ethanol and sugar in Brazil. Environmental Development, 2015, 15, 35-51.	1.8	177
42	Outlook for ethanol production costs in Brazil up to 2030, for different biomass crops and industrial technologies. Applied Energy, 2015, 147, 593-610.	5.1	89
43	Life cycle assessment of butanol production in sugarcane biorefineries in Brazil. Journal of Cleaner Production, 2015, 96, 557-568.	4.6	99
44	Techno-Economic Analysis of Second-Generation Ethanol in Brazil: Competitive, Complementary Aspects with First-Generation Ethanol. , 2014, , 1-29.		3
45	Anaerobic digestion of vinasse from sugarcane biorefineries in Brazil from energy, environmental, and economic perspectives: Profit or expense?. Applied Energy, 2014, 113, 825-835.	5.1	238
46	Butanol production in a sugarcane biorefinery using ethanol as feedstock. Part II: Integration to a second generation sugarcane distillery. Chemical Engineering Research and Design, 2014, 92, 1452-1462.	2.7	29
47	Butanol production in a sugarcane biorefinery using ethanol as feedstock. Part I: Integration to a first generation sugarcane distillery. Chemical Engineering Research and Design, 2014, 92, 1441-1451.	2.7	38
48	Comparative LCA of ethanol versus gasoline in Brazil using different LCIA methods. International Journal of Life Cycle Assessment, 2013, 18, 647-658.	2.2	147
49	Cogeneration in integrated first and second generation ethanol from sugarcane. Chemical Engineering Research and Design, 2013, 91, 1411-1417.	2.7	81
50	Trends in global warming and human health impacts related to Brazilian sugarcane ethanol production considering black carbon emissions. Applied Energy, 2013, 104, 576-582.	5.1	85
51	Biorefineries for the production of first and second generation ethanol and electricity from sugarcane. Applied Energy, 2013, 109, 72-78.	5.1	144
52	Technical and economic assessment of trash recovery in the sugarcane bioenergy production system. Scientia Agricola, 2013, 70, 353-360.	0.6	53
53	Evaluation of different cogeneration systems in first and second generation ethanol production from sugarcane. Computer Aided Chemical Engineering, 2012, , 172-176.	0.3	1
54	Economic and environmental assessment of integrated 1st and 2nd generation sugarcane bioethanol production evaluating different 2nd generation process alternatives. Computer Aided Chemical Engineering, 2012, 30, 177-181.	0.3	10

ΟΤΑVΙΟ CAVALETT

#	Article	IF	CITATIONS
55	Sugarcane as a carbon source: The Brazilian case. Biomass and Bioenergy, 2012, 46, 5-12.	2.9	38
56	Environmental and economic assessment of sugarcane first generation biorefineries in Brazil. Clean Technologies and Environmental Policy, 2012, 14, 399-410.	2.1	136
57	Integrated versus stand-alone second generation ethanol production from sugarcane bagasse and trash. Bioresource Technology, 2012, 103, 152-161.	4.8	294
58	Participatory emergy synthesis of integrated food and biofuel production: a case study from Brazil. Environment, Development and Sustainability, 2012, 14, 167-182.	2.7	12
59	Integrated environmental assessment of biodiesel production from soybean in Brazil. Journal of Cleaner Production, 2010, 18, 55-70.	4.6	128
60	Emergy, nutrients balance, and economic assessment of soybean production and industrialization in Brazil. Journal of Cleaner Production, 2009, 17, 762-771.	4.6	90
61	Emergy and fair trade assessment of soybean production and processing in Brazil. Management of Environmental Quality, 2007, 18, 657-668.	2.2	5
62	Emergy assessment of integrated production systems of grains, pig and fish in small farms in the South Brazil. Ecological Modelling, 2006, 193, 205-224.	1.2	178
63	Brazilian Soybean Production: Emergy Analysis With an Expanded Scope. Bulletin of Science, Technology and Society, 2005, 25, 323-334.	1.1	57
64	Unraveling the role of biofuels in road transport under rapid electrification. Biofuels, Bioproducts and Biorefining, 0, , .	1.9	4