Prodromos Daoutidis

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9480752/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Zeolitic imidazolate framework membranes made by ligand-induced permselectivation. Science, 2018, 361, 1008-1011.	6.0	324
2	Economic Optimization of a Lignocellulosic Biomass-to-Ethanol Supply Chain. Chemical Engineering Science, 2012, 67, 68-79.	1.9	195
3	Using hydrogen and ammonia for renewable energy storage: A geographically comprehensive techno-economic study. Computers and Chemical Engineering, 2020, 136, 106785.	2.0	96
4	Biorefinery Location and Technology Selection Through Supply Chain Optimization. Industrial & Engineering Chemistry Research, 2013, 52, 3192-3208.	1.8	94
5	Language-oriented rule-based reaction network generation and analysis: Description of RING. Computers and Chemical Engineering, 2012, 45, 114-123.	2.0	86
6	Structural evaluation of control configurations for multivariable nonlinear processes. Chemical Engineering Science, 1992, 47, 1091-1107.	1.9	85
7	Dynamics and Control of Process Networks with Large Energy Recycle. Industrial & Engineering Chemistry Research, 2009, 48, 6087-6097.	1.8	63
8	Renewable ammonia for sustainable energy and agriculture: vision and systems engineering opportunities. Current Opinion in Chemical Engineering, 2021, 31, 100667.	3.8	63
9	Modeling and Optimal Design of Absorbent Enhanced Ammonia Synthesis. Processes, 2018, 6, 91.	1.3	57
10	Microgrid/Macrogrid Energy Exchange: A Novel Market Structure and Stochastic Scheduling. IEEE Transactions on Smart Grid, 2017, 8, 178-189.	6.2	55
11	Impact of Decomposition on Distributed Model Predictive Control: A Process Network Case Study. Industrial & Engineering Chemistry Research, 2017, 56, 9606-9616.	1.8	53
12	Integrating operations and control: A perspective and roadmap for future research. Computers and Chemical Engineering, 2018, 115, 179-184.	2.0	50
13	Exploring the Benefits of Modular Renewable-Powered Ammonia Production: A Supply Chain Optimization Study. Industrial & Engineering Chemistry Research, 2019, 58, 5898-5908.	1.8	49
14	Schedulingâ€informed optimal design of systems with timeâ€varying operation: A windâ€powered ammonia case study. AICHE Journal, 2019, 65, e16434.	1.8	49
15	Optimal decomposition for distributed optimization in nonlinear model predictive control through community detection. Computers and Chemical Engineering, 2018, 111, 43-54.	2.0	48
16	Optimal scheduling for wind-powered ammonia generation: Effects of key design parameters. Chemical Engineering Research and Design, 2018, 131, 5-15.	2.7	47
17	Community-based synthesis of distributed control architectures for integrated process networks. Chemical Engineering Science, 2017, 172, 434-443.	1.9	44
18	Energy management and load shaping for commercial microgrids coupled with flexible building environment control. Journal of Energy Storage, 2018, 16, 61-75.	3.9	39

#	Article	IF	CITATIONS
19	A framework for ammonia supply chain optimization incorporating conventional and renewable generation. AICHE Journal, 2017, 63, 4390-4402.	1.8	38
20	A novel system for ammonia-based sustainable energy and agriculture: Concept and design optimization. Chemical Engineering and Processing: Process Intensification, 2019, 140, 11-21.	1.8	38
21	Decomposing complex plants for distributed control: Perspectives from network theory. Computers and Chemical Engineering, 2018, 114, 43-51.	2.0	36
22	Automated synthesis of control configurations for process networks based on structural coupling. Chemical Engineering Science, 2015, 136, 76-87.	1.9	35
23	Controlâ€relevant decomposition of process networks via optimizationâ€based hierarchical clustering. AICHE Journal, 2016, 62, 3177-3188.	1.8	35
24	Language-oriented rule-based reaction network generation and analysis: Applications of RING. Computers and Chemical Engineering, 2012, 46, 141-152.	2.0	33
25	Network decomposition for distributed control through community detection in input–output bipartite graphs. Journal of Process Control, 2018, 64, 7-14.	1.7	33
26	Control configuration synthesis using agglomerative hierarchical clustering: A graph-theoretic approach. Journal of Process Control, 2016, 46, 43-54.	1.7	31
27	A mathematical model for zeolite membrane module performance and its use for techno-economic evaluation of improved energy efficiency hybrid membrane-distillation processes for butane isomer separations. Journal of Membrane Science, 2016, 520, 434-449.	4.1	30
28	Distributed Estimation and Nonlinear Model Predictive Control Using Community Detection. Industrial & Engineering Chemistry Research, 2019, 58, 13495-13507.	1.8	28
29	Distributed adaptive dynamic programming for data-driven optimal control. Systems and Control Letters, 2018, 120, 36-43.	1.3	26
30	Decomposition of control and optimization problems by network structure: Concepts, methods, and inspirations from biology. AICHE Journal, 2019, 65, e16708.	1.8	26
31	Process design and supply chain optimization of supercritical biodiesel synthesis from waste cooking oils. Chemical Engineering Research and Design, 2013, 91, 1456-1466.	2.7	24
32	Relative timeâ€averaged gain array (RTAGA) for distributed controlâ€oriented network decomposition. AICHE Journal, 2018, 64, 1682-1690.	1.8	21
33	Distributed Model Predictive Control of an Amine Gas Sweetening Plant. Industrial & Engineering Chemistry Research, 2018, 57, 13103-13115.	1.8	21
34	Dissipativity learning control (DLC): A framework of input–output data-driven control. Computers and Chemical Engineering, 2019, 130, 106576.	2.0	21
35	Distributed model predictive control of process networks: Impact of control architecture * *Financial support from the Petroleum Institute, Abu Dhabi, UAE is gratefully acknowledged IFAC-PapersOnLine, 2017, 50, 12452-12457.	0.5	20
36	System Decomposition for Distributed Multivariate Statistical Process Monitoring by Performance Driven Agglomerative Clustering. Industrial & Engineering Chemistry Research, 2018, 57, 8283-8298.	1.8	20

#	Article	IF	CITATIONS
37	Comprehensive study of decomposition effects on distributed output tracking of an integrated process over a wide operating range. Chemical Engineering Research and Design, 2018, 134, 553-563.	2.7	20
38	Harnessing the Wind Power of the Ocean with Green Offshore Ammonia. ACS Sustainable Chemistry and Engineering, 2021, 9, 14605-14617.	3.2	20
39	Economic assessment of Temperature Swing Adsorption systems as Claus Tail Gas Clean Up Units. Chemical Engineering Science, 2015, 126, 186-195.	1.9	19
40	Graph representation and decomposition of ODE/hyperbolic PDE systems. Computers and Chemical Engineering, 2017, 106, 532-543.	2.0	19
41	Bioethanol enrichment using zeolite membranes: Molecular modeling, conceptual process design and techno-economic analysis. Journal of Membrane Science, 2017, 540, 464-476.	4.1	18
42	DeCODe: a community-based algorithm for generating high-quality decompositions of optimization problems. Optimization and Engineering, 2019, 20, 1067-1084.	1.3	17
43	Process design and optimization for etherification of glycerol with isobutene. Chemical Engineering Science, 2016, 144, 326-335.	1.9	16
44	Distributed decision making for intensified process systems. Current Opinion in Chemical Engineering, 2019, 25, 75-81.	3.8	16
45	Model-Driven Engineering of N-Linked Glycosylation in Chinese Hamster Ovary Cells. ACS Synthetic Biology, 2019, 8, 2524-2535.	1.9	15
46	Automated network generation and analysis of biochemical reaction pathways using RING. Metabolic Engineering, 2018, 49, 84-93.	3.6	14
47	Distributed control and optimization of process system networks: A review and perspective. Chinese Journal of Chemical Engineering, 2019, 27, 1461-1473.	1.7	14
48	Scheduling and supervisory control for cost effective load shaping of microgrids with flexible demands. Journal of Process Control, 2019, 74, 202-214.	1.7	14
49	Dissipativity learning control (DLC): Theoretical foundations of input–output data-driven model-free control. Systems and Control Letters, 2021, 147, 104831.	1.3	12
50	Networks with large solvent recycle: Dynamics, hierarchical control, and a biorefinery application. AICHE Journal, 2012, 58, 1764-1777.	1.8	11
51	Decomposition of integrated scheduling and dynamic optimization problems using community detection. Journal of Process Control, 2020, 90, 63-74.	1.7	11
52	Optimal Design of Sustainable Ammonia-Based Food–Energy–Water Systems with Nitrogen Management. ACS Sustainable Chemistry and Engineering, 2021, 9, 2816-2834.	3.2	11
53	Renewable hydrogen and ammonia for combined heat and power systems in remote locations: Optimal design and scheduling. Optimal Control Applications and Methods, 2023, 44, 719-738.	1.3	11
54	Optimization of Adsorption-Based Natural Gas Dryers. Industrial & Engineering Chemistry Research, 2016, 55, 4658-4667.	1.8	10

#	Article	IF	CITATIONS
55	Fast and stable nonconvex constrained distributed optimization: the ELLADA algorithm. Optimization and Engineering, 2022, 23, 259-301.	1.3	10
56	Generating optimal overlapping subsystems for distributed statistical fault detection subject to constraints. Journal of Process Control, 2019, 80, 143-151.	1.7	9
57	Distributed nonlinear model predictive control through accelerated parallel ADMM. , 2019, , .		8
58	Stochastic blockmodeling for learning the structure of optimization problems. AICHE Journal, 2022, 68, e17415.	1.8	8
59	Distributed/Hierarchical Control Architecture Design * *Financial support from NSF-CBET is gratefully acknowledged IFAC-PapersOnLine, 2017, 50, 12015-12020.	0.5	7
60	Towards a Generic Algorithm for Identifying High-Quality Decompositions of Optimization Problems. Computer Aided Chemical Engineering, 2018, 44, 943-948.	0.3	7
61	The role of community structures in sparse feedback control. , 2018, , .		7
62	Efficient Water Pollution Abatement. Industrial & Engineering Chemistry Research, 2019, 58, 22483-22487.	1.8	7
63	Optimal Feature Selection for Distributed Data-Driven Process Monitoring. Industrial & Engineering Chemistry Research, 2020, 59, 2307-2317.	1.8	7
64	A Bilevel Programming Approach to the Convergence Analysis of Control-Lyapunov Functions. IEEE Transactions on Automatic Control, 2019, 64, 4174-4179.	3.6	6
65	Graph representation and distributed control of diffusion-convection-reaction system networks. Chemical Engineering Science, 2019, 204, 128-139.	1.9	6
66	An integrated platform for mucinâ€ŧype O â€glycosylation network generation and visualization. Biotechnology and Bioengineering, 2019, 116, 1341-1354.	1.7	6
67	Mathematical modeling and parameter estimation of <scp>MFI</scp> membranes for para/orthoâ€xylene separation. AICHE Journal, 2021, 67, e17232.	1.8	6
68	High-Capacity Regenerable H2S Sorbent for Reducing Sulfur Emissions. Industrial & Engineering Chemistry Research, 0, , .	1.8	6
69	Efficient Solution of Enterprise-Wide Optimization Problems Using Nested Stochastic Blockmodeling. Industrial & Engineering Chemistry Research, 2021, 60, 14476-14494.	1.8	5
70	Multiple Hotelling's T2 tests for distributed fault detection of large-scale systems. Computers and Chemical Engineering, 2020, 136, 106807.	2.0	4
71	Application of graph theory and filter based variable selection methods in the design of a distributed data-driven monitoring system. Computers and Chemical Engineering, 2020, 143, 107098.	2.0	3
72	Nonlinear state and parameter estimation using derivative information: A Lie-Sobolev approach. Computers and Chemical Engineering, 2021, 151, 107369.	2.0	3

#	Article	IF	CITATIONS
73	A multicut generalized benders decomposition approach for the integration of process operations and dynamic optimization for continuous systems. Computers and Chemical Engineering, 2022, 164, 107859.	2.0	3
74	Reprint of: Optimal decomposition for distributed optimization in nonlinear model predictive control through community detection. Computers and Chemical Engineering, 2018, 116, 144-155.	2.0	2
75	Concept and Design Optimization of a Novel Ammonia-Based System for Food-Energy-Water Sustainability. Computer Aided Chemical Engineering, 2019, , 65-70.	0.3	2
76	Decomposition and Distributed Control of Integrated Lumped and Distributed Parameter Process Networks. , 2018, , .		1
77	Smart manufacturing: A sustainable energy perspective. , 2020, , 423-454.		0