
Yusuf Kaynak

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9480720/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Effect of printing parameters and post-process on surface roughness and dimensional deviation of PLA parts fabricated by extrusion-based 3D printing. Journal of the Brazilian Society of Mechanical Sciences and Engineering, 2022, 44, 1.	0.8	18
2	Machining-induced surface integrity of Inconel 718 alloy fabricated by powder bed fusion additive manufacturing under various laser processing parameters. Machining Science and Technology, 2022, 26, 49-71.	1.4	8
3	Enhancing Surface Integrity of Additively Manufactured Inconel 718 by Roller Burnishing Process. Procedia CIRP, 2022, 108, 681-686.	1.0	12
4	Heat treatment temperature-induced microstructure, microhardness and wear resistance of Inconel 718 produced by selective laser melting additive manufacturing. Optik, 2021, 227, 163907.	1.4	42
5	Influence of the post-processing operations on surface integrity of metal components produced by laser powder bed fusion additive manufacturing: a review. Machining Science and Technology, 2021, 25, 118-176.	1.4	67
6	Prediction of residual stress and distortion in laser powder bed fusion additive manufacturing process of Inconel 718 alloy. Procedia CIRP, 2021, 99, 330-335.	1.0	4
7	Improving the surface quality and mechanical properties of selective laser sintered PA2200 components by the vibratory surface finishing process. SN Applied Sciences, 2021, 3, 1.	1.5	13
8	Effect of aging and finish machining on the surface integrity of selective laser melted maraging steel. Rapid Prototyping Journal, 2021, 27, 1900-1909.	1.6	9
9	Review on machining of additively manufactured nickel and titanium alloys. Journal of Materials Research and Technology, 2021, 15, 3192-3221.	2.6	67
10	Post-processing effects on the surface characteristics of Inconel 718 alloy fabricated by selective laser melting additive manufacturing. Progress in Additive Manufacturing, 2020, 5, 221-234.	2.5	47
11	Evaluation of boron nitride nanoparticles on delamination in drilling carbon fiber epoxy nanocomposite materials. Journal of Composite Materials, 2020, 54, 215-227.	1.2	26
12	Sustainability assessment of in-house developed environment-friendly hybrid techniques for turning Ti-6Al-4V. Sustainable Materials and Technologies, 2020, 26, e00220.	1.7	10
13	Machining-induced surface integrity of holes drilled in lead-free brass alloy. Procedia CIRP, 2020, 87, 148-152.	1.0	10
14	Drilling process and resulting surface properties of Inconel 718 alloy fabricated by Selective Laser Melting Additive Manufacturing. Procedia CIRP, 2020, 87, 355-359.	1.0	22
15	An experimental analysis of minimum chip thickness in micro-milling of two different titanium alloys. Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture, 2020, 234, 1486-1498.	1.5	23
16	Influence of heat treatment temperature on the microstructural, mechanical, and wear behavior of 316L stainless steel fabricated by laser powder bed additive manufacturing. International Journal of Advanced Manufacturing Technology, 2020, 107, 1947-1956.	1.5	75
17	The effect of cutting parameters and cutting tools on machining performance of carbon graphite material. Machining Science and Technology, 2020, 24, 96-111.	1.4	3
18	The Effect of Finish-Milling Operation on Surface Quality and Wear Resistance of Inconel 625 Produced by Selective Laser Melting Additive Manufacturing. Lecture Notes in Mechanical Engineering, 2020, , 263-272.	0.3	9

Yusuf Kaynak

#	Article	IF	CITATIONS
19	Chip formation and phase transformation in orthogonal machining of NiTi shape memory alloy: microstructure-based modelling and experimental validation. CIRP Annals - Manufacturing Technology, 2020, 69, 85-88.	1.7	6
20	Surface Integrity Characteristics of NiTiHf High Temperature Shape Memory Alloys. Lecture Notes in Mechanical Engineering, 2020, , 254-262.	0.3	0
21	Machinability of Ni-rich NiTiHf high temperature shape memory alloy. Smart Materials and Structures, 2019, 28, 055008.	1.8	9
22	High speed machining of near-beta titanium Ti-5553 alloy under various cooling and lubrication conditions. International Journal of Advanced Manufacturing Technology, 2019, 102, 4257-4271.	1.5	37
23	The effects of cutting parameters on machining performance of titanium alloy Ti-5553. Advances in Materials and Processing Technologies, 2019, 5, 317-328.	0.8	3
24	Cryogenic Machining of Titanium Ti-5553 Alloy. Journal of Manufacturing Science and Engineering, Transactions of the ASME, 2019, 141, .	1.3	35
25	The effect of post-processing operations on surface characteristics of 316L stainless steel produced by selective laser melting. Additive Manufacturing, 2019, 26, 84-93.	1.7	102
26	Experimental and numerical study of chip formation in orthogonal cutting of Ti-5553 alloy: the influence of cryogenic, MQL, and high pressure coolant supply. International Journal of Advanced Manufacturing Technology, 2018, 94, 1411-1428.	1.5	48
27	Finish machining-induced surface roughness, microhardness and XRD analysis of selective laser melted Inconel 718 alloy. Procedia CIRP, 2018, 71, 500-504.	1.0	75
28	A comparison of flood cooling, minimum quantity lubrication and high pressure coolant on machining and surface integrity of titanium Ti-5553 alloy. Journal of Manufacturing Processes, 2018, 34, 503-512.	2.8	55
29	Progressive Tool Wear in Cryogenic Machining: The Effect of Liquid Nitrogen and Carbon Dioxide. Journal of Manufacturing and Materials Processing, 2018, 2, 31.	1.0	29
30	Porosity, Surface Quality, Microhardness and Microstructure of Selective Laser Melted 316L Stainless Steel Resulting from Finish Machining. Journal of Manufacturing and Materials Processing, 2018, 2, 36.	1.0	42
31	Sıvı azot ve karbondioksit kriyojenik soğutucuların sertleştirilmiş çelik malzemenin talaşlı imalat performansına etkisi. Journal of the Faculty of Engineering and Architecture of Gazi University, 2018, 2018, .	0.3	0
32	The Effect of Material Parameters on Chip Formation in Orthogonal Cutting Simulation of Ti-5553 Alloy. Procedia CIRP, 2017, 58, 305-310.	1.0	14
33	Cutting Speed Dependent Microstructure and Transformation Behavior of NiTi Alloy in Dry and Cryogenic Machining. Journal of Materials Engineering and Performance, 2015, 24, 452-460.	1.2	52
34	The Effect of Active Phase of the Work Material on Machining Performance of a NiTi Shape Memory Alloy. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2015, 46, 2625-2636.	1.1	26
35	Progressive tool-wear in machining of room-temperature austenitic NiTi alloys: The influence of cooling/lubricating, melting, and heat treatment conditions. Journal of Materials Processing Technology, 2015, 215, 95-104.	3.1	55
36	Evaluation of machining performance in cryogenic machining of Inconel 718 and comparison with dry and MQL machining. International Journal of Advanced Manufacturing Technology, 2014, 72, 919-933.	1.5	192

Yusuf Kaynak

#	Article	IF	CITATIONS
37	Cryogenic Machining-Induced Surface Integrity: A Review and Comparison with Dry, MQL, and Flood-Cooled Machining. Machining Science and Technology, 2014, 18, 149-198.	1.4	195
38	Machining and Phase Transformation Response of Room-Temperature Austenitic NiTi Shape Memory Alloy. Journal of Materials Engineering and Performance, 2014, 23, 3354-3360.	1.2	28
39	Tool-wear analysis in cryogenic machining of NiTi shape memory alloys: A comparison of tool-wear performance with dry and MQL machining. Wear, 2013, 306, 51-63.	1.5	196
40	Influence of molding conditions on the shrinkage and roundness of injection molded parts. International Journal of Advanced Manufacturing Technology, 2010, 46, 571-578.	1.5	59
41	Application of Taguchi methods in the optimization of cutting parameters for surface finish and hole diameter accuracy in dry drilling processes. International Journal of Advanced Manufacturing Technology, 2009, 40, 458-469.	1.5	160
42	Dimensional analyses and surface quality of the laser cutting process for engineering plastics. International Journal of Advanced Manufacturing Technology, 2009, 41, 259-267.	1.5	45
43	Static, dynamic and fatigue analysis of a semi-automaticgun locking block. Engineering Failure Analysis, 2009, 16, 2235-2244.	1.8	14