
Jaimyun Jung

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/94805/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Importance of Microstructural Features in Bimodal Structure–Property Linkage. Metals and Materials International, 2023, 29, 53-58.	3.4	7
2	Predicting High Temperature Flow Stress of Nickel Alloy A230 Based on an Artificial Neural Network. Metals, 2022, 12, 223.	2.3	10
3	Evolution of Microstructure, Mechanical Properties and Residual Stress of a Cold Rolled Invar Sheet Due to Heat Treatment. Metals, 2022, 12, 110.	2.3	1
4	Constitutive Modeling with Critical Twinning Stress in CoCrFeMnNi High Entropy Alloy at Cryogenic Temperature and Room Temperature. Metals and Materials International, 2021, 27, 2300-2309.	3.4	30
5	Exploration of optimal microstructure and mechanical properties in continuous microstructure space using a variational autoencoder. Materials and Design, 2021, 202, 109544.	7.0	37
6	Super-resolving material microstructure image via deep learning for microstructure characterization and mechanical behavior analysis. Npj Computational Materials, 2021, 7, .	8.7	24
7	Die Design for Extrusion Process of Titanium Seamless Tube Using Finite Element Analysis. Metals, 2021, 11, 1338.	2.3	4
8	Microstructure design using machine learning generated low dimensional and continuous design space. Materialia, 2020, 11, 100690.	2.7	29
9	On the phase transformation and dynamic stress–strain partitioning of ferrous medium-entropy alloy using experimentation and finite element method. Materialia, 2020, 9, 100619.	2.7	18
10	Synergetic strengthening of additively manufactured (CoCrFeMnNi)99C1 high-entropy alloy by heterogeneous anisotropic microstructure. Additive Manufacturing, 2020, 35, 101333.	3.0	18
11	High-Output and Bending-Tolerant Triboelectric Nanogenerator Based on an Interlocked Array of Surface-Functionalized Indium Tin Oxide Nanohelixes. ACS Energy Letters, 2019, 4, 1748-1754.	17.4	48
12	Microstructural tailoring in reverse gradient-structured copper sheet using single-roll angular-rolling and subsequent annealing. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2019, 764, 138258.	5.6	12
13	Grain Size Effect on Mechanical Properties Under Biaxial Stretching in Pure Tantalum. Metals and Materials International, 2019, 25, 1448-1456.	3.4	6
14	Relationships Between Stretch-Flangeability and Microstructure-Mechanical Properties in Ultra-High-Strength Dual-Phase Steels. Metals and Materials International, 2019, 25, 1161-1169.	3.4	33
15	Bayesian approach in predicting mechanical properties of materials: Application to dual phase steels. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2019, 743, 382-390.	5.6	32
16	Modelling feasibility constraints for materials design: Application to inverse crystallographic texture problem. Computational Materials Science, 2019, 156, 361-367.	3.0	4
17	An efficient machine learning approach to establish structure-property linkages. Computational Materials Science, 2019, 156, 17-25.	3.0	62
18	Small-Scale System for Evaluation of Stretch-Flangeability with Excellent Reliability. Jom, 2018, 70, 912-917.	1.9	7

Jaimyun Jung

#	Article	IF	CITATIONS
19	Modelling the evolution of recrystallization texture for a non-grain oriented electrical steel. Computational Materials Science, 2018, 149, 57-64.	3.0	12
20	Force Sensors: A Highly Sensitive Force Sensor with Fast Response Based on Interlocked Arrays of Indium Tin Oxide Nanosprings toward Human Tactile Perception (Adv. Funct. Mater. 42/2018). Advanced Functional Materials, 2018, 28, 1870304.	14.9	0
21	A Highly Sensitive Force Sensor with Fast Response Based on Interlocked Arrays of Indium Tin Oxide Nanosprings toward Human Tactile Perception. Advanced Functional Materials, 2018, 28, 1804132.	14.9	36
22	Effect of annealing heat treatment on microstructural evolution and tensile behavior of Al0.5CoCrFeMnNi high-entropy alloy. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2018, 728, 251-258.	5.6	61
23	Shape memory characteristics of a nanocrystalline TiNi alloy processed by HPT followed by post-deformation annealing. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2018, 734, 445-452.	5.6	18
24	Effect of secondary phase particles on the tensile behavior of Mg-Zn-Ca alloy. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2018, 735, 288-294.	5.6	32
25	Effect of grain size on stretch-flangeability of twinning-induced plasticity steels. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2018, 735, 295-301.	5.6	14
26	Numerical analysis on the formation of P-orientation near coarse precipitates in FCC crystals during recrystallization. Acta Materialia, 2017, 131, 363-372.	7.9	17
27	Continuum understanding of twin formation near grain boundaries of FCC metals with low stacking fault energy. Npj Computational Materials, 2017, 3, .	8.7	32
28	Key factors of stretch-flangeability of sheet materials. Journal of Materials Science, 2017, 52, 7808-7823.	3.7	38
29	Development of Methodology with Excellent Reproducibility for Evaluating Stretch-Flangeability Using a Sheared-Edge Tensile Test. Experimental Mechanics, 2017, 57, 1349-1358.	2.0	6
30	Deep Drawing Behavior of CoCrFeMnNi High-Entropy Alloys. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2017, 48, 4111-4120.	2.2	18
31	Three-dimensional microstructure modeling of particulate composites using statistical synthetic structure and its thermo-mechanical finite element analysis. Computational Materials Science, 2017, 126, 265-271.	3.0	27
32	Effect of coarse precipitates on surface roughening of an FCC polycrystalline material using crystal plasticity. Computational Materials Science, 2017, 126, 121-131.	3.0	12
33	Factors governing hole expansion ratio of steel sheets with smooth sheared edge. Metals and Materials International, 2016, 22, 1009-1014.	3.4	51
34	Correlation between fracture toughness and stretch-flangeability of advanced high strength steels. Materials Letters, 2016, 180, 322-326.	2.6	66
35	Annealing behavior and shape memory effect in NiTi alloy processed by equal-channel angular pressing at room temperature. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2015, 629, 16-22.	5.6	31
36	Three-dimensional real structure-based finite element analysis of mechanical behavior for porous titanium manufactured by a space holder method. Computational Materials Science, 2015, 100, 2-7.	3.0	24

#	Article	IF	CITATIONS
37	Shape memory effect in nanocrystalline NiTi alloy processed by high-pressure torsion. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2015, 626, 203-206.	5.6	46
38	Finite Element and Experimental Analysis of Closure and Contact Bonding of Pores During Hot Rolling of Steel. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2014, 45, 4002-4011.	2.2	11
39	Finite Element Analysis of Deformation Homogeneity During Continuous and Batch Type Equal Channel Angular Pressing. Journal of Materials Engineering and Performance, 2013, 22, 3222-3227.	2.5	4