Seyed Farshid Kashani-Bozorg

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9480257/publications.pdf Version: 2024-02-01

Seyed Farshid

#	Article	IF	CITATIONS
1	Exceptional improvement in the wear resistance of biomedical β-type titanium alloy with the use of a biocompatible multilayer Si/DLC nanocomposite coating. Ceramics International, 2022, 48, 17376-17384.	2.3	17
2	Perforated two-dimensional nanoarchitectures for next-generation batteries: Recent advances and extensible perspectives. Progress in Materials Science, 2021, 116, 100716.	16.0	30
3	Effect of Pre- and Post-weld Heat Treatment on Microstructure and Mechanical Properties of GTD-111 Superalloy Welds. Metals and Materials International, 2021, 27, 1173-1192.	1.8	22
4	Creep Behaviors Evaluation of IN738 Superalloy Welded by Pulsed Nd:YAG Laser Through the Small Punch Creep Test. Metallography, Microstructure, and Analysis, 2021, 10, 199-207.	0.5	5
5	Ultrafast green microwave-assisted synthesis of high-entropy oxide nanoparticles for Li-ion battery applications. Materials Chemistry and Physics, 2021, 262, 124265.	2.0	61
6	Effect of Nd:YAG Pulsed-Laser Welding Parameters on Melting Rate of GTD-111 Superalloy Joint. Journal of Materials Engineering and Performance, 2021, 30, 9108-9117.	1.2	9
7	The effect of service temperature on the impact strength and fracture toughness of GTD-111 superalloy. Engineering Failure Analysis, 2021, 127, 105507.	1.8	18
8	Hierarchical brain-coral-like structure (3D) vs rod-like structure (1D): Effect on electromagnetic wave loss features of SrFe12O19 and CoFe2O4. Ceramics International, 2021, 47, 30448-30458.	2.3	67
9	Boosted microwave dissipation performance via integration of magneto/dielectric particles with hierarchical 3D morphology in bilayer absorber. Journal of Magnetism and Magnetic Materials, 2021, 539, 168363.	1.0	63
10	Relationship between solidification and liquation cracks in the joining of GTD-111 nickel-based superalloy by Nd:YAG pulsed-laser welding. Journal of Materials Research and Technology, 2021, 15, 5635-5649.	2.6	22
11	Mechanical and Microstructural Characterization of Hybrid Aluminum Nanocomposites Synthesized from an Al–Fe3O4 System by Friction Stir Processing. Metals and Materials International, 2020, 26, 1441-1453.	1.8	15
12	Hot Cracking of GTD-111 Nickel-Based Superalloy Welded by Pulsed Nd:YAG Laser. Metallography, Microstructure, and Analysis, 2020, 9, 16-32.	0.5	21
13	Effect of multi-pass friction stir processing on textural evolution and grain boundary structure of Al–Fe3O4 system. Journal of Materials Research and Technology, 2020, 9, 1070-1086.	2.6	9
14	In vitro study of a novel multi-substituted hydroxyapatite nanopowder synthesized by an ultra-fast, efficient and green microwave-assisted method. Materials Science and Engineering C, 2020, 117, 111310.	3.8	19
15	Dissimilar resistance spot welding of 6061-T6 aluminum alloy/St-12 carbon steel using a high entropy alloy interlayer. Intermetallics, 2020, 124, 106876.	1.8	38
16	Defect-rich Ni3Sn4 quantum dots anchored on graphene sheets exhibiting unexpected reversible conversion reactions with exceptional lithium and sodium storage performance. Applied Surface Science, 2020, 526, 146756.	3.1	12
17	Exceptionally Reversible Li-/Na-Ion Storage and Ultrastable Solid-Electrolyte Interphase in Layered GeP ₅ Anode. ACS Applied Materials & Interfaces, 2019, 11, 32815-32825.	4.0	28
18	Failure mechanisms of friction stir spot welds of AA6061â€T6/DP590 steel during tensileâ€shear testing. Fatigue and Fracture of Engineering Materials and Structures, 2019, 42, 2247-2261.	1.7	2

SEYED FARSHID

#	Article	IF	CITATIONS
19	Formation of Al/(Al13Fe4Â+ÂAl2O3) Nano-composites via Mechanical Alloying and Friction Stir Processing. Journal of Materials Engineering and Performance, 2018, 27, 471-482.	1.2	18
20	Microstructure and property assessment of dissimilar joints of 6061-T6 Al/dual-phase steel fabricated by friction stir spot welding. Welding in the World, Le Soudage Dans Le Monde, 2018, 62, 751-765.	1.3	14
21	Strong, persistent superficial oxidation-assisted chemical bonding of black phosphorus with multiwall carbon nanotubes for high-capacity ultradurable storage of lithium and sodium. Journal of Materials Chemistry A, 2018, 6, 10121-10134.	5.2	71
22	EBSD investigation of Al/(Al ₁₃ Fe ₄ +Al ₂ O ₃) nanocomposites fabricated by mechanical milling and friction stir processing. Journal of Microscopy, 2018, 270, 3-16.	0.8	11
23	Simultaneous grain refinement and nanoscale spinodal decomposition of β phase in Ti-Nb-Ta-Zr alloy induced by ultrasonic mechanical impacts. Journal of Alloys and Compounds, 2018, 738, 540-549.	2.8	42
24	Electrochemical and kinetic performance of amorphous/nanostructured TiNi-based intermetallic compound with Nb substitution synthesized by mechanical alloying. Journal of Materials Research, 2018, 33, 3774-3784.	1.2	2
25	Ultra-fast, highly efficient and green synthesis of bioactive forsterite nanopowder via microwave irradiation. Materials Science and Engineering C, 2018, 92, 236-244.	3.8	22
26	Ultra-fast microwave-assisted synthesis of diopside nanopowder for biomedical applications. Ceramics International, 2018, 44, 18752-18758.	2.3	12
27	Significant improvement in cell adhesion and wear resistance of biomedical Î ² -type titanium alloy through ultrasonic nanocrystal surface modification. Journal of Alloys and Compounds, 2018, 762, 941-949.	2.8	54
28	Surface Modification of Titanium by Producing Ti/TiN Surface Composite Layers via FSP. Acta Metallurgica Sinica (English Letters), 2017, 30, 550-557.	1.5	10
29	Nanostructured β-type titanium alloy fabricated by ultrasonic nanocrystal surface modification. Ultrasonics Sonochemistry, 2017, 39, 698-706.	3.8	50
30	Reactive mechanism and mechanical properties of in-situ hybrid nano-composites fabricated from an Al–Fe2O3 system by friction stir processing. Materials Characterization, 2017, 127, 279-287.	1.9	38
31	A robust design of Ru quantum dot/N-doped holey graphene for efficient Li–O ₂ batteries. Journal of Materials Chemistry A, 2017, 5, 619-631.	5.2	55
32	Rational hybrid modulation of P, N dual-doped holey graphene for high-performance supercapacitors. Journal of Power Sources, 2017, 372, 286-296.	4.0	51
33	Three-dimensional graphene-based spheres and crumpled balls: micro- and nano-structures, synthesis strategies, properties and applications. RSC Advances, 2016, 6, 50941-50967.	1.7	33
34	A Thermodynamic Approach to Predict Formation Enthalpies of Ternary Systems Based on Miedema's Model. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2016, 47, 3761-3770.	1,1	21
35	Texture Analyses of Ti/Al2O3 Nanocomposite Produced Using Friction Stir Processing. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2016, 47, 5618-5629.	1.1	15
36	Strengthening analyses and mechanical assessment of Ti/Al2O3 nano-composites produced by friction stir processing. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2015, 631, 75-85.	2.6	32

Seyed Farshid

#	Article	IF	CITATIONS
37	Effect of friction stir processing on the tribological performance of Steel/Al2O3 nanocomposites. Surface and Coatings Technology, 2015, 276, 507-515.	2.2	28
38	Friction Stir Processing of Mild Steel/Al2O3 Nanocomposite: Modeling and Experimental Studies. Metallography, Microstructure, and Analysis, 2015, 4, 122-130.	0.5	14
39	Fabrication of Al/AlN nano-composite layers by friction stir processing of 6061 Al-T6 substrate. Surface and Interface Analysis, 2015, 47, 227-238.	0.8	7
40	Microstructure and wear of in-situ Ti/(TiNÂ+ÂTiB) hybrid composite layers produced using liquid phase process. Materials Chemistry and Physics, 2015, 152, 147-157.	2.0	31
41	Evolution and Stability of a Nanocrystalline Cu3Ge Intermetallic Compound Fabricated by Means of High Energy Ball Milling and Annealing Processes. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2015, 46, 516-524.	1.1	4
42	Production of in-situ hard Ti/TiN composite surface layers on CP-Ti using reactive friction stir processing under nitrogen environment. Surface and Coatings Technology, 2013, 218, 62-70.	2.2	29
43	Effects of thermal conditions on microstructure in nanocomposite of Al/Si3N4 produced by friction stir processing. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2013, 559, 187-193.	2.6	62
44	Wear Assessment of Ti/SiC Surface Nano-Composite Layer and its Associated CP-Ti Substrate. Advanced Materials Research, 2012, 445, 595-600.	0.3	2
45	FABRICATION OF TI/SIC SURFACE NANO-COMPOSITE LAYER BY FRICTION STIR PROCESSING. International Journal of Modern Physics Conference Series, 2012, 05, 367-374.	0.7	5
46	Microstructure and mechanical properties of steel/TiC nano-composite surface layer produced by friction stir processing. Surface and Coatings Technology, 2012, 209, 15-22.	2.2	70
47	Evolution of Nanocrystalline Structures Using High Energy Ball Milling of Quaternary Mg _{1.75} Nb _{0.125} C _{0.125} Ni and Binary Mg ₂ Ni. Acta Physica Polonica A, 2012, 121, 211-213.	0.2	3
48	The effects of friction-stir process parameters on the fabrication of Ti/SiC nano-composite surface layer. Surface and Coatings Technology, 2011, 206, 1372-1381.	2.2	107
49	Dissimilar lap joining of 304 stainless steel to CP-Ti employing friction stir welding. Materials & Design, 2011, 32, 1824-1832.	5.1	62
50	Wear assessment of Al/Al2O3 nano-composite surface layer produced using friction stir processing. Wear, 2011, 270, 403-412.	1.5	125
51	COMPARISON OF ELECTRODE PROPERTIES OF BINARY, TERNARY AND QUATERNARY NANOCRYSTALLINE Mg2Ni-BASED POWDERS. International Journal of Nanoscience, 2011, 10, 1067-1071.	0.4	0
52	FABRICATION OF Mg/SiC NANOCOMPOSITE SURFACE LAYER USING FRICTION STIR PROCESSING TECHNIQUE. International Journal of Nanoscience, 2011, 10, 1073-1076.	0.4	9
53	Joining of CP-Ti to 304 stainless steel using friction stir welding technique. Materials & Design, 2010, 31, 4800-4807.	5.1	97
54	Microstructures and mechanical properties of Al/Al2O3 surface nano-composite layer produced by friction stir processing. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2009, 500, 84-91.	2.6	332

#	Article	IF	CITATIONS
55	Nanocrystalline Mg2Ni-based powders produced by high-energy ball milling and subsequent annealing. Journal of Alloys and Compounds, 2008, 456, 211-215.	2.8	96
56	Effects of TIG surface melting and chromium surface alloying on microstructure, hardness and wear resistance of ADI. Journal of Iron and Steel Research International, 2008, 15, 86-94.	1.4	18