Shunsuke Kotani

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9480152/publications.pdf

Version: 2024-02-01

257450 289244 1,672 52 24 40 citations g-index h-index papers 60 60 60 1179 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Isolation, Synthesis, and Structure–Activity Relationship Study on Daphnane and Tigliane Diterpenes as HIV Latency-Reversing Agents. Journal of Medicinal Chemistry, 2022, , .	6.4	11
2	Molecular recognition of a single-chain Fv antibody specific for GA-pyridine, an advanced glycation end-product (AGE), elucidated using biophysical techniques and synthetic antigen analogues. Journal of Biochemistry, 2021, 170, 379-387.	1.7	1
3	Chiral Phosphine Oxide-Catalyzed Enantioselective Ring Opening of Oxetanes. Heterocycles, 2021, 103, 1048.	0.7	1
4	Recent advances in asymmetric phosphine oxide catalysis. Tetrahedron Letters, 2020, 61, 151421.	1.4	19
5	Phosphineâ€oxideâ€catalyzed Enantioselective Crossâ€aldol Reactions of Aldehydes with Trichlorosilane as Lewis Acid Promoter. ChemCatChem, 2020, 12, 4780-4783.	3.7	2
6	Melinjo seed extract increases adiponectin multimerization in physiological and pathological conditions. Scientific Reports, 2020, 10, 4313.	3.3	10
7	Phosphine Oxide-Catalyzed Asymmetric Aldol Reactions and Double Aldol Reactions. Chemical and Pharmaceutical Bulletin, 2019, 67, 519-526.	1.3	8
8	Lewis Base-Catalyzed Enantioselective Conjugate Reduction of \hat{i}^2 , \hat{i}^2 -Disubstituted $\hat{i}\pm$, \hat{i}^2 -Unsaturated Ketones with Trichlorosilane: $\langle i \rangle E \langle i \rangle / \langle i \rangle Z \langle i \rangle$ -Isomerization, Regioselectivity, and Synthetic Applications. Journal of Organic Chemistry, 2019, 84, 11458-11473.	3.2	20
9	Stereoselective Synthesis of 2-Fluoro-1,3-Diols via Lithium Binaphtholate-Catalyzed Aldol–Tishchenko Reaction. Organic Letters, 2019, 21, 4192-4196.	4.6	11
10	Catalytic Enantioselective Aldol Reactions of Unprotected Carboxylic Acids under Phosphine Oxide Catalysis. Angewandte Chemie, 2018, 130, 16103-16107.	2.0	5
11	Catalytic Enantioselective Aldol Reactions of Unprotected Carboxylic Acids under Phosphine Oxide Catalysis. Angewandte Chemie - International Edition, 2018, 57, 15877-15881.	13.8	33
12	Enantioselective chlorinative aldol reaction of \hat{l}_{\pm} -substituted acroleins catalyzed by chiral phosphine oxides. Tetrahedron: Asymmetry, 2017, 28, 282-287.	1.8	8
13	Sequential Catalysis of Phosphine Oxide for Stereoselective Synthesis of Stereopentads. Organic Letters, 2017, 19, 3672-3675.	4.6	19
14	Stereoselective Synthesis of Nitrogen-Containing Compounds from Enamines. Journal of Organic Chemistry, 2017, 82, 10968-10979.	3.2	4
15	Chiral lithium binaphtholate for enantioselective amination of acyclic \hat{l} ±-alkyl- \hat{l} 2-keto esters: Application to the total synthesis of l-carbidopa. Tetrahedron, 2017, 73, 5975-5982.	1.9	6
16	Asymmetric Aldol/Vinylogous Aldol/Cyclization Reaction Using Phosphine Oxide Catalysts. Chemical and Pharmaceutical Bulletin, 2017, 65, 989-993.	1.3	8
17	Enantioselective amination of acyclic \hat{l} ±-alkylated \hat{l}^2 -keto esters catalyzed by chiral lithium binaphtholate. Tetrahedron Letters, 2016, 57, 4217-4219.	1.4	6
18	Stereoselective Synthesis of Highly Functionalized 2,3-Dihydro-4-pyranones Using Phosphine Oxide as Catalyst. Chemical and Pharmaceutical Bulletin, 2016, 64, 189-192.	1.3	9

#	Article	IF	CITATIONS
19	Indoxyl sulfate potentiates skeletal muscle atrophy by inducing the oxidative stress-mediated expression of myostatin and atrogin-1. Scientific Reports, 2016, 6, 32084.	3.3	124
20	Concise Asymmetric Construction of <i>C</i> ₂ â€symmetric 1,9â€Diarylnonanoids Using a Hypervalent Silicon Complex: Total Synthesis of (â°')â€Ericanone. Chemistry - an Asian Journal, 2016, 11, 376-379.	3.3	18
21	<i>p</i> â€Cresyl sulfate, a uremic toxin, causes vascular endothelial and smooth muscle cell damages by inducing oxidative stress. Pharmacology Research and Perspectives, 2015, 3, e00092.	2.4	59
22	A Sterically Congested αâ€Cyanoamine as a Cyanating Reagent: Cyanation of Acetals and Orthoesters. European Journal of Organic Chemistry, 2015, 2015, 6606-6609.	2.4	14
23	Chiral Lithium Binaphtholate for Enantioselective Michael Addition of Acyclic αâ€Alkylâ€Î²â€Keto Esters to Vinyl Ketones. Asian Journal of Organic Chemistry, 2015, 4, 616-618.	2.7	9
24	Nitration of indoxyl sulfate facilitates its cytotoxicity in human renal proximal tubular cells via expression of heme oxygenase-1. Biochemical and Biophysical Research Communications, 2015, 465, 481-487.	2.1	3
25	Enantioselective Double Aldol Reactions Involving the Sequential Activation of Silicon Tetrachloride by Chiral Phosphine Oxides. Synlett, 2014, 25, 631-640.	1.8	18
26	Diastereoselective synthesis of 1,3-diamines by a domino reaction of imines, enamines, and trichlorosilane. Tetrahedron Letters, 2014, 55, 1924-1926.	1.4	11
27	Phosphine Oxide-Catalyzed Enantioselective Intramolecular Aldol Reaction via Regioselective Enolization of Unsymmetrical Diketones with Tetrachlorosilane. Organic Letters, 2014, 16, 4802-4805.	4.6	22
28	Lithium Binaphtholate-Catalyzed Asymmetric Addition of Lithium Acetylides to Carbonyl Compounds. Journal of Organic Chemistry, 2014, 79, 4817-4825.	3.2	41
29	Imino ene-type reaction of enamines with N-sulfonylimines and application to diastereoselective synthesis of N-sulfonyl-1,3-diamines. Tetrahedron Letters, 2014, 55, 4082-4085.	1.4	7
30	Atropisomeric Chiral Dienes in Asymmetric Catalysis: <i>C</i> ₂ â€Symmetric (<i>Z</i> , <i>Z</i> ,3â€Bis[1â€(diphenylphosphinyl)ethylidene]tetralin as a Highly Active Lewis Base Organocatalyst. Angewandte Chemie - International Edition, 2013, 52, 13798-13802.	13.8	27
31	Enantioselective Aldol Reactions Catalyzed by Chiral Phosphine Oxides. Chemical Record, 2013, 13, 362-370.	5.8	40
32	Stereoselective Synthesis of Multiple Stereocenters by Using a Double Aldol Reaction. Angewandte Chemie - International Edition, 2013, 52, 3461-3464.	13.8	48
33	Enantioselective Morita–Baylis–Hillman reaction catalyzed by a chiral phosphine oxide. Tetrahedron Letters, 2013, 54, 6430-6433.	1.4	17
34	Facile synthesis of chiral 1,2-chlorohydrins via the ring-opening of meso-epoxides catalyzed by chiral phosphine oxides. Tetrahedron, 2013, 69, 3075-3081.	1.9	29
35	Trichlorosilyl triflate-mediated enantioselective directed cross-aldol reaction between ketones using a chiral phosphine oxide as an organocatalyst. Chemical Communications, 2012, 48, 5524.	4.1	34
36	Synthesis of aryl group-modified DIOP dioxides (Ar-DIOPOs) and their application as modular Lewis base catalysts. Organic and Biomolecular Chemistry, 2012, 10, 4562.	2.8	34

#	Article	IF	CITATIONS
37	Construction of quaternary carbon centers by a base-catalyzed enantioselective aldol reaction and related reactions of trimethoxysilyl enol ethers. Tetrahedron, 2012, 68, 4210-4224.	1.9	13
38	Enantioselective reductive aldol reaction using tertiary amine as hydride donor. Tetrahedron Letters, 2012, 53, 4199-4201.	1.4	34
39	Lithium acetylides as alkynylating reagents for the enantioselective alkynylation of ketones catalyzed by lithium binaphtholate. Chemical Communications, 2011, 47, 5614-5616.	4.1	49
40	A Tertiary Amine as A Hydride Donor: Trichlorosilyl Triflate-mediated Conjugate Reduction of Unsaturated Ketones. Organic Letters, 2011, 13, 3968-3971.	4.6	50
41	Enantioselective Double Aldol Reaction Catalyzed by Chiral Phosphine Oxide. Chemistry - A European Journal, 2011, 17, 7992-7995.	3. 3	44
42	Synthesis of \hat{I}^3 -amino alcohols from aldehydes, enamines, and trichlorosilane using Lewis base catalysts. Tetrahedron, 2011, 67, 531-539.	1.9	16
43	Trichlorosilyl triflate for enantioselective direct-type aldol reaction with chiral phosphine oxide. Tetrahedron Letters, 2011, 52, 2834-2836.	1.4	38
44	DMAP-catalyzed cyanation of aldehydes and ketones with ethyl cyanoformate. Tetrahedron Letters, 2010, 51, 3547-3549.	1.4	29
45	Diastereo―and Enantioselective Reductive Aldol Reaction with Trichlorosilane Using Chiral Lewis Bases as Organocatalysts. Chemistry - an Asian Journal, 2010, 5, 478-481.	3.3	83
46	Enantioselective aldol reaction of silyl ketene acetals promoted by a Lewis base-activated Lewis acid catalyst. Tetrahedron: Asymmetry, 2009, 20, 1369-1370.	1.8	33
47	Novel enantioselective direct aldol-type reaction promoted by a chiral phosphine oxide as an organocatalyst. Tetrahedron Letters, 2009, 50, 4602-4605.	1.4	57
48	First asymmetric Abramov-type phosphonylation of aldehydes with trialkyl phosphites catalyzed by chiral Lewis bases. Tetrahedron, 2008, 64, 6415-6419.	1.9	77
49	Lewis base-catalyzed conjugate reduction and reductive aldol reaction of $\hat{l}\pm,\hat{l}^2$ -unsaturated ketones using trichlorosilane. Chemical Communications, 2008, , 4309.	4.1	127
50	Chiral phosphine oxide BINAPO as a Lewis base catalyst for asymmetric allylation and aldol reaction of trichlorosilyl compounds. Tetrahedron, 2007, 63, 3122-3132.	1.9	100
51	Asymmetric ring opening of meso-epoxides catalyzed by the chiral phosphine oxide BINAPO. Tetrahedron: Asymmetry, 2005, 16, 2391-2392.	1.8	82
52	Chiral phosphine oxide BINAPO as a catalyst for enantioselective allylation of aldehydes with allyltrichlorosilanes. Tetrahedron Letters, 2005, 46, 157-159.	1.4	89