
Irene CervellÃ³

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9480008/publications.pdf Version: 2024-02-01

Ισένε Cedveu Δ3

#	Article	IF	CITATIONS
1	Autologous cell therapy with CD133+ bone marrow-derived stem cells for refractory Asherman's syndrome and endometrial atrophy: a pilot cohort study. Human Reproduction, 2016, 31, 1087-1096.	0.4	237
2	Human Endometrial Side Population Cells Exhibit Genotypic, Phenotypic and Functional Features of Somatic Stem Cells. PLoS ONE, 2010, 5, e10964.	1.1	161
3	Reconstruction of Endometrium from Human Endometrial Side Population Cell Lines. PLoS ONE, 2011, 6, e21221.	1.1	154
4	Human CD133+ bone marrow-derived stem cells promote endometrial proliferation in a murine model of Asherman syndrome. Fertility and Sterility, 2015, 104, 1552-1560.e3.	0.5	120
5	Identification and characterization of the human leiomyoma side population as putative tumor-initiating cells. Fertility and Sterility, 2012, 98, 741-751.e6.	0.5	101
6	Bone Marrow-Derived Cells from Male Donors Do Not Contribute to the Endometrial Side Population of the Recipient. PLoS ONE, 2012, 7, e30260.	1.1	85
7	Uterine stem cells: from basic research to advanced cell therapies. Human Reproduction Update, 2018, 24, 673-693.	5.2	83
8	Tissue-derived mesenchymal stromal cells used as vehicles for anti-tumor therapy exert different in vivoeffects on migration capacity and tumor growth. BMC Medicine, 2013, 11, 139.	2.3	61
9	De- and recellularization of the pig uterus: a bioengineering pilot study ^{<xref <br="" ref-type="fn">rid="afn2">â€</xref>} . Biology of Reproduction, 2016, 96, 34-45.	1.2	41
10	Contribution of different bone marrow-derived cell types in endometrial regeneration using an irradiated murine model. Fertility and Sterility, 2015, 103, 1596-1605.e1.	0.5	40
11	Inhibition of tumor cell proliferation in human uterine leiomyomas by vitamin D via Wnt/β-catenin pathway. Fertility and Sterility, 2019, 111, 397-407.	0.5	40
12	Tissue-specific decellularized endometrial substratum mimicking different physiological conditions influences in vitro embryo development in a rabbit model. Acta Biomaterialia, 2019, 89, 126-138.	4.1	39
13	Overexpression of the truncated form of High Mobility Group A proteins (HMGA2) in human myometrial cells induces leiomyoma-like tissue formation. Molecular Human Reproduction, 2015, 21, 330-338.	1.3	32
14	Bioengineering the Uterus: An Overview of Recent Advances and Future Perspectives in Reproductive Medicine. Annals of Biomedical Engineering, 2017, 45, 1710-1717.	1.3	31
15	Cell Therapy and Tissue Engineering from and toward the Uterus. Seminars in Reproductive Medicine, 2015, 33, 366-372.	0.5	29
16	Somatic Stem Cells in the Endometrium. Reproductive Sciences, 2009, 16, 200-205.	1.1	26
17	Stem Cells in Human Endometrium and Endometrial Carcinoma. International Journal of Gynecological Pathology, 2011, 30, 317-327.	0.9	26
18	Leucine-rich repeat–containing G-protein–coupledÂreceptorÂ5–positiveÂcellsÂin the endometrial stem cell niche. Fertility and Sterility, 2017, 107, 510-519.e3.	0.5	24

IRENE CERVELLÃ³

#	Article	IF	CITATIONS
19	Current understanding of somatic stem cells in leiomyoma formation. Fertility and Sterility, 2014, 102, 613-620.	0.5	23
20	Long-term vitamin D treatment decreases human uterine leiomyoma size in a xenograft animal model. Fertility and Sterility, 2020, 113, 205-216.e4.	0.5	22
21	Somatic Stem Cells in the Human Endometrium. Seminars in Reproductive Medicine, 2013, 31, 069-076.	0.5	20
22	Vitamin D as an effective treatment in human uterine leiomyomas independent of mediator complex subunit 12 mutation. Fertility and Sterility, 2021, 115, 512-521.	0.5	16
23	5-aza-2′-deoxycitidine inhibits cell proliferation, extracellular matrix formation and Wnt/β-catenin pathway in human uterine leiomyomas. Reproductive Biology and Endocrinology, 2021, 19, 106.	1.4	15
24	Human Endometrial Reconstitution From Somatic Stem Cells: The Importance of Niche-Like Cells. Reproductive Sciences, 2019, 26, 77-87.	1.1	8
25	Reply: Bone marrow-derived endometrial cells: what you see is what you get. Human Reproduction Update, 2019, 25, 274-275.	5.2	3
26	Adult stem cells in the human endometrium. , 0, , 115-132.		1
27	Regenerative Medicine and Tissue Engineering in Reproductive Medicine. , 2016, , 139-151.		0