Naba K Dutta

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9479372/publications.pdf

Version: 2024-02-01

87723 138251 4,134 123 38 58 citations h-index g-index papers 5102 126 126 126 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	In Vitro Corrosion Resistance of a Layer-by-Layer Engineered Hybrid Coating on ZK60 Magnesium Alloy. Sustainability, 2022, 14, 2459.	1.6	8
2	Microporosity engineered printable silk/graphene hydrogels and their cytocompatibility evaluations. Materials Today Advances, 2022, 14, 100233.	2.5	4
3	Electrospun Composite Nanofiltration Membranes for Arsenic Removal. Polymers, 2022, 14, 1980.	2.0	4
4	Resilin-mimetics as a smart biomaterial platform for biomedical applications. Nature Communications, 2021, 12, 149.	5.8	69
5	Microroughness induced biomimetic coating for biodegradation control of magnesium. Materials Science and Engineering C, 2021, 121, 111811.	3.8	15
6	3D Printable Electrically Conductive Hydrogel Scaffolds for Biomedical Applications: A Review. Polymers, 2021, 13, 474.	2.0	74
7	Additive Manufacturing of Polymer Materials: Progress, Promise and Challenges. Polymers, 2021, 13, 753.	2.0	156
8	Perspective on Constructing Cellulose-Hydrogel-Based Gut-Like Bioreactors for Growth and Delivery of Multiple-Strain Probiotic Bacteria. Journal of Agricultural and Food Chemistry, 2021, 69, 4946-4959.	2.4	19
9	Engineering a Bioactive Hybrid Coating for <i>In Vitro</i> Corrosion Control of Magnesium and Its Alloy. ACS Applied Bio Materials, 2021, 4, 5542-5555.	2.3	14
10	Mixed-Matrix Membrane Fabrication for Water Treatment. Membranes, 2021, 11, 557.	1.4	27
11	3D Printable Soy/Silk Hybrid Hydrogels for Tissue Engineering Applications. Biomacromolecules, 2021, 22, 3668-3678.	2.6	15
12	Polyelectrolyte Gels: Fundamentals, Fabrication and Applications. Gels, 2021, 7, 148.	2.1	17
13	Emerging bioadhesives: from traditional bioactive and bioinert to a new biomimetic protein-based approach. Advances in Colloid and Interface Science, 2021, 296, 102521.	7.0	12
14	Methodological advances and challenges in probiotic bacteria production: Ongoing strategies and future perspectives. Biochemical Engineering Journal, 2021, 176, 108199.	1.8	9
15	Molecular structure development in silsesquioxaneâ^'urethane thin film hybrids: A smallâ€angle neutron scattering investigation. Journal of Applied Polymer Science, 2020, 137, 48772.	1.3	2
16	Nanofiltration for Arsenic Removal: Challenges, Recent Developments, and Perspectives. Nanomaterials, 2020, 10, 1323.	1.9	76
17	Tuning the Hierarchical Structure and Resilience of Resilin-like Polypeptide Hydrogels Using Graphene Oxide. ACS Applied Bio Materials, 2020, 3, 8688-8697.	2.3	8
18	Silk fibroins in multiscale dimensions for diverse applications. RSC Advances, 2020, 10, 33227-33247.	1.7	16

#	Article	IF	CITATIONS
19	Poly(ionic liquid)-Stabilized Graphene Nanoinks for Scalable 3D Printing of Graphene Aerogels. ACS Applied Nano Materials, 2020, 3, 11608-11619.	2.4	23
20	Magnesium Alloys With Tunable Interfaces as Bone Implant Materials. Frontiers in Bioengineering and Biotechnology, 2020, 8, 564.	2.0	68
21	Tunable Biomimetic Hydrogels from Silk Fibroin and Nanocellulose. ACS Sustainable Chemistry and Engineering, 2020, 8, 2375-2389.	3.2	84
22	Bioprintable tough hydrogels for tissue engineering applications. Advances in Colloid and Interface Science, 2020, 281, 102163.	7.0	73
23	A Sustainable Biomineralization Approach for the Synthesis of Highly Fluorescent Ultra-Small Pt Nanoclusters. Biosensors, 2019, 9, 128.	2.3	15
24	3D Bioprinted Nanocellulose-Based Hydrogels for Tissue Engineering Applications: A Brief Review. Polymers, 2019, 11, 898.	2.0	107
25	Robust and Tunable Hybrid Hydrogels from Photo-Cross-Linked Soy Protein Isolate and Regenerated Silk Fibroin. ACS Sustainable Chemistry and Engineering, 2019, 7, 9257-9271.	3.2	44
26	Graphene-Based Inks for Printing of Planar Micro-Supercapacitors: A Review. Materials, 2019, 12, 978.	1.3	40
27	Evolution of the Interfacial Structure of a Catalyst Ink with the Quality of the Dispersing Solvent: A Contrast Variation Small-Angle and Ultrasmall-Angle Neutron Scattering Investigation. ACS Applied Materials & Dispersion of the Dispersion of t	4.0	65
28	Effect of polymerized ionic liquid based gel inhibitor on electrochemical performance of self-assembled nanophase coating. Progress in Organic Coatings, 2018, 120, 143-152.	1.9	2
29	Structural evolution of photocrosslinked silk fibroin and silk fibroin-based hybrid hydrogels: A small angle and ultra-small angle scattering investigation. International Journal of Biological Macromolecules, 2018, 114, 998-1007.	3.6	35
30	Nanostructure Evolution of Biomimetic Hydrogel from Silk Fibroin and Poly($\langle i \rangle N \langle i \rangle$ -Vinylcaprolactam): A Small Angle Neutron Scattering Study. ACS Symposium Series, 2018, , 71-89.	0.5	0
31	Sulfonated Thiophene Derivative Stabilized Aqueous Poly(3-hexylthiophene):Phenyl-C ₆₁ -butyric Acid Methyl Ester Nanoparticle Dispersion for Organic Solar Cell Applications. ACS Applied Materials & Interfaces, 2018, 10, 44116-44125.	4.0	18
32	Graphene inks for printed flexible electronics: Graphene dispersions, ink formulations, printing techniques and applications. Advances in Colloid and Interface Science, 2018, 261, 41-61.	7.0	177
33	Tough Photocrosslinked Silk Fibroin/Graphene Oxide Nanocomposite Hydrogels. Langmuir, 2018, 34, 9238-9251.	1.6	54
34	Water-Reprocessable, Reformable, and Ecofriendly Sustainable Material Based on Disulfide-Cross-Linked Polyethyleneimine. ACS Omega, 2017, 2, 3036-3042.	1.6	7
35	Novel rhodanine based molecular acceptor for organic solar cells. EPJ Photovoltaics, 2017, 8, 80402.	0.8	2
36	Interfacial Engineering of fullerenol using thiophene for solution processable solar cell: Effect of thiophenated fullerene on the miscibility with poly(3-hexylthiophene). Procedia Engineering, 2017, 215, 219-225.	1.2	0

#	Article	IF	CITATIONS
37	Emerging Corrosion Inhibitors for Interfacial Coating. Coatings, 2017, 7, 217.	1.2	63
38	Novel Thiol-Ene Hybrid Coating for Metal Protection. Coatings, 2016, 6, 17.	1.2	12
39	Polymeric Ionic Liquid Nanoparticle Emulsions as a Corrosion Inhibitor in Anticorrosion Coatings. ACS Omega, 2016, 1, 29-40.	1.6	31
40	Engineering DN hydrogels from regenerated silk fibroin and poly(N-vinylcaprolactam). Journal of Materials Chemistry B, 2016, 4, 5519-5533.	2.9	25
41	Effects of Crowding and Environment on the Evolution of Conformational Ensembles of the Multi-Stimuli-Responsive Intrinsically Disordered Protein, Rec1-Resilin: A Small-Angle Scattering Investigation. Journal of Physical Chemistry B, 2016, 120, 6490-6503.	1.2	22
42	Bulk heterojunction organic photovoltaics from water-processable nanomaterials and their facile fabrication approaches. Advances in Colloid and Interface Science, 2016, 235, 56-69.	7.0	21
43	Induced insolubility of electrospun poly(N-vinylcaprolactam) fibres through hydrogen bonding with Tannic acid. Polymer, 2016, 87, 194-201.	1.8	22
44	Separator Membrane from Crosslinked Poly(Vinyl Alcohol) and Poly(Methyl Vinyl Ether-alt-Maleic) Tj ETQq0 0	0 rgBT_/Over	loc <u>k</u> 10 Tf 50
45	Structural ensembles reveal intrinsic disorder for the multi-stimuli responsive bio-mimetic protein Rec1-resilin. Scientific Reports, 2015, 5, 10896.	1.6	34
46	Tunable Thermoresponsiveness of Resilin via Coassembly with Rigid Biopolymers. Langmuir, 2015, 31, 8882-8891.	1.6	22
47	Fabrication of highly elastic resilin/silk fibroin based hydrogel by rapid photo-crosslinking reaction. Journal of Materials Chemistry B, 2015, 3, 6576-6579.	2.9	50
48	Facile Fabrication of Polymerizable Ionic Liquid Based-Gel Beads via Thiol–ene Chemistry. ACS Applied Materials & Company: Interfaces, 2015, 7, 17298-17306.	4.0	28
49	A multi-responsive intrinsically disordered protein (IDP)-directed green synthesis of fluorescent gold nanoclusters. Journal of Materials Chemistry B, 2015, 3, 6580-6586.	2.9	13
50	Composite Electrolyte Membranes from Partially Fluorinated Polymer and Hyperbranched, Sulfonated Polysulfone. Nanomaterials, 2014, 4, 1-18.	1.9	27
51	Biomimetic proteinâ€based elastomeric hydrogels for biomedical applications. Polymer International, 2014, 63, 1545-1557.	1.6	27
52	Fabrication and characterisation of an electrospun tubular 3D scaffold platform of poly(vinylidene) Tj ETQq0 C Biomaterials Science, Polymer Edition, 2014, 25, 2023-2041.	0 0 rgBT /Ove 1.9	erlock 10 Tf 50 10
53	Multi-responsive biomaterials and nanobioconjugates from resilin-like protein polymers. Journal of Materials Chemistry B, 2014, 2, 5936-5947.	2.9	44
54	An16-resilin: An advanced multi-stimuli-responsive resilin-mimetic protein polymer. Acta Biomaterialia, 2014, 10, 4768-4777.	4.1	43

#	Article	IF	Citations
55	Novel dendritic-poly(urethane-urea) hybrid thin films from hydrogen bond rich dendrons. Polymer, 2014, 55, 5132-5139.	1.8	10
56	Facile and rapid ruthenium mediated photo-crosslinking of Bombyx mori silk fibroin. Journal of Materials Chemistry B, 2014, 2, 6259-6270.	2.9	80
57	Engineering Interaction between Bone Marrow Derived Endothelial Cells and Electrospun Surfaces for Artificial Vascular Graft Applications. Biomacromolecules, 2014, 15, 1276-1287.	2.6	18
58	Interaction of Platelets with Poly(vinylidene fluoride- <i>co</i> -hexafluoropropylene) Electrospun Surfaces. Biomacromolecules, 2014, 15, 744-755.	2.6	17
59	Work Function Engineering of Graphene. Nanomaterials, 2014, 4, 267-300.	1.9	240
60	Novel nanocomposites and hybrids for high-temperature lubricating coating applications. , 2013, , 717-778.		3
61	Near Superhydrophobic Fibrous Scaffold for Endothelialization: Fabrication, Characterization and Cellular Activities. Biomacromolecules, 2013, 14, 3850-3860.	2.6	25
62	Anticorrosive interfacial coatings for metallic substrates. Surface Innovations, 2013, 1, 112-137.	1.4	8
63	Tailoring the ionic association and microstructure of ionomers with various metal salts. Journal of Applied Polymer Science, 2012, 126, E130.	1.3	1
64	Effects of neutralization on the structure and properties of an ionomer. Journal of Applied Polymer Science, 2012, 124, 2908-2918.	1.3	12
65	The effect of hydration on molecular chain mobility and the viscoelastic behavior of resilin-mimetic protein-based hydrogels. Biomaterials, 2011, 32, 8462-8473.	5.7	66
66	Self-organization, interfacial interaction and photophysical properties of gold nanoparticle complexes derived from resilin-mimetic fluorescent protein rec1-resilin. Biomaterials, 2011, 32, 2786-2796.	5.7	46
67	Poly[octanediolâ€∢i>coâ€(citric acid)â€xi>coâ€(sebacic acid)] elastomers: novel bioâ€elastomers for tissue engineering. Polymer International, 2011, 60, 333-343.	1.6	34
68	A Genetically Engineered Protein Responsive to Multiple Stimuli. Angewandte Chemie - International Edition, 2011, 50, 4428-4431.	7.2	93
69	Systematic study of interfacial interactions between clays and an ionomer. Journal of Applied Polymer Science, 2010, 117, 3395-3405.	1.3	4
70	Electrochemical performance of sol–gel derived phospho-silicate-methacrylate hybrid coatings. Journal of Electroanalytical Chemistry, 2010, 641, 28-34.	1.9	28
71	Inorganic modification of block copolymer for medium temperature proton exchange membrane application. Journal of Membrane Science, 2010, 351, 168-177.	4.1	26
72	A pH-responsive interface derived from resilin-mimetic protein Rec1-resilin. Biomaterials, 2010, 31, 4434-4446.	5.7	53

#	Article	IF	CITATIONS
73	X-ray photoelectron spectroscopy study of the growth kinetics of biomimetically grown hydroxyapatite thin-film coatings. Applied Surface Science, 2010, 256, 7178-7185.	3.1	14
74	Polyoctanediol Citrate/Sebacate Bioelastomer Films: Surface Morphology, Chemistry and Functionality. Journal of Biomaterials Science, Polymer Edition, 2010, 21, 237-251.	1.9	20
75	Nanostructure Evolution in High-Temperature Perfluorosulfonic Acid Ionomer Membrane by Small-Angle X-ray Scattering. Langmuir, 2010, 26, 19073-19083.	1.6	15
76	Osteoblast Biocompatibility on Poly(octanediol citrate)/Sebacate Elastomers with Controlled Wettability. Journal of Biomaterials Science, Polymer Edition, 2010, 21, 1039-1050.	1.9	7
77	Synthesis and characterization of novel citric acid-based polyester elastomers. Polymer, 2009, 50, 1682-1691.	1.8	116
78	In situ modification of Nafion® membranes with phospho-silicate for improved water retention and proton conduction. Journal of Membrane Science, 2009, 333, 50-58.	4.1	58
79	Physical approaches for fabrication of organized nanostructure of resilin-mimetic elastic protein rec1-resilin. Biomaterials, 2009, 30, 4868-4876.	5.7	41
80	Composite Polymer Electrolyte Containing Ionic Liquid and Functionalized Polyhedral Oligomeric Silsesquioxanes for Anhydrous PEM Applications. ACS Applied Materials & Samp; Interfaces, 2009, 1, 1173-1182.	4.0	122
81	Interfacial Interactions in Aprotic Ionic Liquid Based Protonic Membrane and Its Correlation with High Temperature Conductivity and Thermal Properties. Langmuir, 2009, 25, 9240-9251.	1.6	72
82	Fluoro-silsesquioxane-urethane Hybrid for Thin Film Applications. ACS Applied Materials & Samp; Interfaces, 2009, 1, 336-347.	4.0	50
83	Palladiumâ€catalyzed phosphonation of SEBS block copolymer. Journal of Polymer Science Part A, 2008, 46, 5431-5441.	2.5	20
84	Platinum Catalyst Nanoparticles from Directed Deposition in Functional Block Copolymers. Advanced Materials, 2008, 20, 1819-1824.	11.1	6
85	Self-Assembly and Supramolecular Assembly in Nanophase Separated Polymers and Thin Films. Nanostructure Science and Technology, 2008, , 220-304.	0.1	1
86	Novel nanocomposites and hybrids for lubricating coating applications. Tribology and Interface Engineering Series, 2008, , 501-542.	0.0	4
87	Novel Organicâ^'Inorganic Hybrids with Increased Water Retention for Elevated Temperature Proton Exchange Membrane Application. Chemistry of Materials, 2008, 20, 6857-6870.	3.2	84
88	Interfacial Interaction and Morphology of EVOH and Ionomer Blends by Scanning Thermal Microscopy and Its Correlation with Barrier Characteristics. Langmuir, 2008, 24, 5464-5473.	1.6	18
89	Designing superhydrophobic surfaces using fluorosilsesquioxane-urethane hybrid and porous silicon gradients. , 2008, , .		0
90	Molecular Level Stabilization of Poly(ethylene terephthalate) with Nanostructured Open Cage Trisilanolisobutyl-POSS. Macromolecules, 2007, 40, 265-272.	2.2	38

#	Article	IF	Citations
91	Synthesis and characterization of methacrylate phospho-silicate hybrid for thin film applications. Polymer, 2007, 48, 7078-7086.	1.8	92
92	MALDIâ-'TOF MS and DIOSâ-'MS Investigation of the Degradation and Discoloration of Poly(ethylene) Tj ETQq0	0 0 rgBT /	Overlock 10 Tr
93	Environment-induced self-assembly in phase separated block copolymer systems: A SANS investigation. Physica B: Condensed Matter, 2006, 385-386, 773-775.	1.3	2
94	XPS and bioactivity study of the bisphosphonate pamidronate adsorbed onto plasma sprayed hydroxyapatite coatings. Applied Surface Science, 2006, 253, 2644-2651.	3.1	53
95	Colour formation in poly(ethylene terephthalate) during melt processing. Polymer Degradation and Stability, 2006, 91, 875-885.	2.7	44
96	Adsorption of bisphosphonate onto hydroxyapatite using a novel co-precipitation technique for bone growth enhancement. Journal of Biomedical Materials Research - Part A, 2006, 79A, 271-281.	2.1	32
97	lonomer–silica hybrids via sol–gel reaction. Polymer, 2005, 46, 4013-4022.	1.8	4
98	Plasma-polymerized perfluoro(methylcyclohexane) coating on ethylene propylene diene elastomer surface: Effect of plasma processing condition on the deposition kinetics, morphology and surface energy of the film. Thin Solid Films, 2005, 491, 123-132.	0.8	13
99	Physical organogels: mechanism and kinetics of evaporation of the solvents entrapped within network scaffolding. Thermochimica Acta, 2005, 427, 207-219.	1.2	5
100	Solvent effects on the kinetics of gelation and the crosslink density of polysiloxane gels. Silicon Chemistry, 2005, 2, 223-233.	0.8	1
101	Perfluoro(methylcyclohexane) plasma polymer thin film: Growth, surface morphology, and properties investigated by scanning thermal microscopy. Journal of Polymer Science, Part B: Polymer Physics, 2005, 43, 1392-1400.	2.4	13
102	Surface tailoring of an ethylene propylene diene elastomeric terpolymer via plasma-polymerized coating of tetramethyldisiloxane. Polymer International, 2005, 54, 513-525.	1.6	7
103	Effect of composition on the solution rheology of stearyl methacrylate-co-styrene-co-vinyl pyrrolidinone in paraffinic base oil. Polymer Engineering and Science, 2004, 44, 736-748.	1.5	13
104	Benzene physical and chemical organogels: Effect of network scaffolding on the thermodynamic behavior of entrapped solvent molecules. Journal of Applied Polymer Science, 2004, 94, 1253-1264.	1.3	9
105	Mechanism and kinetics of the isothermal thermodegradation of ethylene-propylene-diene (EPDM) elastomers. Polymer Degradation and Stability, 2003, 80, 525-531.	2.7	53
106	Mechanism of solvent entrapment within the network scaffolding in organogels: thermodynamic and kinetic investigations. Polymer International, 2003, 52, 1095-1107.	1.6	21
107	Hydrocarbon Gels: Rheological Investigation of Structure. ACS Symposium Series, 2002, , 190-204.	0.5	5
108	Organicâ^'Inorganic Hybrid from Ionomer via Solâ^'Gel Reaction. Chemistry of Materials, 2001, 13, 3644-3652.	3.2	74

#	Article	IF	CITATIONS
109	Influence of ethylene–propylene ratio on the thermal degradation behaviour of EPDM elastomers. Thermochimica Acta, 2001, 367-368, 185-193.	1.2	53
110	Prediction of Viscoelastic Behaviour of Thermorheologically Complex Polymeric Materials. Journal of Reinforced Plastics and Composites, 2001, 20, 399-408.	1.6	3
111	High-Resolution Solid State NMR Investigation of the Filler-Rubber Interaction: Part III. Investigation on the Structure and Formation Mechanism of Carbon Gel in the Carbon Black-Filled Styrene—Butadiene Rubber. Rubber Chemistry and Technology, 2001, 74, 260-280.	0.6	18
112	Rheological behavior of highly filled ethylene propylene diene rubber compounds. Polymer Engineering and Science, 2000, 40, 1065-1073.	1.5	12
113	Generic relaxation spectra of solid polymers. I. Development of spectral distribution model and its application to stress relaxation of polypropylene. Journal of Applied Polymer Science, 1997, 66, 1101-1115.	1.3	40
114	High resolution solid-state n.m.r. investigation of the filler-rubber interaction: 1. High speed 1H magic-angle spinning n.m.r. spectroscopy in carbon black filled styrene-butadiene rubber. Polymer, 1994, 35, 4293-4299.	1.8	73
115	Miscibility Studies in Blends of Bromobutyl Rubber and Natural Rubber. Journal of Elastomers and Plastics, 1993, 25, 158-179.	0.7	7
116	FTIR and NMR Studies on Crosslinking Reaction between Chlorosulfonated Polyethylene and Epoxidized Natural Rubber. Rubber Chemistry and Technology, 1993, 66, 230-241.	0.6	16
117	Influence of curing systems on the properties of bromobutyl rubber: Part Illâ€"Effect of different types of curing systems on the cure characteristics, physical properties and thermo-oxidative degradation characteristics. Polymer Degradation and Stability, 1992, 36, 73-80.	2.7	6
118	Effects of types of fillers on the molecular relaxation characteristics, dynamic mechanical, and physical properties of rubber vulcanizates. Journal of Applied Polymer Science, 1992, 44, 1635-1648.	1.3	43
119	Effect of plasticizer concentration on the hysteresis, tear strength and stress-relaxation characteristics of black-loaded rubber vulcanizate. Colloid and Polymer Science, 1991, 269, 331-342.	1.0	4
120	The effect of carbon black concentration on the dynamic mechanical properties of bromobutyl rubber. Journal of Materials Science, 1991, 26, 177-188.	1.7	19
121	The influence of curing systems on the properties of bromobutyl rubber: Part 2â€"Effect of concentration of curing resin on the dynamic mechanical properties. Polymer Degradation and Stability, 1990, 30, 231-256.	2.7	8
122	Influence of large static deformations on the dynamic mechanical properties of bromobutyl rubber vulcanizates: Part I. Effect of carbon black loading. Polymer Testing, 1990, 9, 3-13.	2.3	14
123	Effect of Carbon Black Concentration on the Micro Mechanism of Fracture of Rubber Vulcanizates. Journal of Elastomers and Plastics, 1990, 22, 136-151.	0.7	0