Jun Zhou

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9479216/publications.pdf Version: 2024-02-01

		4942	6282
191	25,924	84	158
papers	citations	h-index	g-index
197	197	197	24456
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Piezoelectric Field Effect Transistor and Nanoforce Sensor Based on a Single ZnO Nanowire. Nano Letters, 2006, 6, 2768-2772.	4.5	983
2	Flexible Solid-State Supercapacitors Based on Carbon Nanoparticles/MnO ₂ Nanorods Hybrid Structure. ACS Nano, 2012, 6, 656-661.	7.3	961
3	Hydrogenated ZnO Core–Shell Nanocables for Flexible Supercapacitors and Self-Powered Systems. ACS Nano, 2013, 7, 2617-2626.	7.3	781
4	Water-evaporation-induced electricity with nanostructured carbon materials. Nature Nanotechnology, 2017, 12, 317-321.	15.6	747
5	Flexible Piezotronic Strain Sensor. Nano Letters, 2008, 8, 3035-3040.	4.5	742
6	WO _{3–x} @Au@MnO ₂ Core–Shell Nanowires on Carbon Fabric for Highâ€Performance Flexible Supercapacitors. Advanced Materials, 2012, 24, 938-944.	11.1	641
7	Fiber-Based All-Solid-State Flexible Supercapacitors for Self-Powered Systems. ACS Nano, 2012, 6, 9200-9206.	7.3	596
8	Polypyrrole-coated paper for flexible solid-state energy storage. Energy and Environmental Science, 2013, 6, 470.	15.6	580
9	Fiber-Based Generator for Wearable Electronics and Mobile Medication. ACS Nano, 2014, 8, 6273-6280.	7.3	543
10	Gigantic enhancement in response and reset time of ZnO UV nanosensor by utilizing Schottky contact and surface functionalization. Applied Physics Letters, 2009, 94, 191103.	1.5	515
11	High‧train Sensors Based on ZnO Nanowire/Polystyrene Hybridized Flexible Films. Advanced Materials, 2011, 23, 5440-5444.	11.1	497
12	Robust and Low-Cost Flame-Treated Wood for High-Performance Solar Steam Generation. ACS Applied Materials & Interfaces, 2017, 9, 15052-15057.	4.0	463
13	Freestanding Mesoporous VN/CNT Hybrid Electrodes for Flexible Allâ€5olidâ€5tate Supercapacitors. Advanced Materials, 2013, 25, 5091-5097.	11.1	420
14	WO _{3â^'<i>x</i>} /MoO _{3â^'<i>x</i>} Core/Shell Nanowires on Carbon Fabric as an Anode for All‧olid‧tate Asymmetric Supercapacitors. Advanced Energy Materials, 2012, 2, 1328-1332.	10.2	401
15	Ultrasensitive and highly selective gas sensors using three-dimensional tungsten oxide nanowire networks. Applied Physics Letters, 2006, 88, 203101.	1.5	399
16	Piezoelectric and Semiconducting Coupled Power Generating Process of a Single ZnO Belt/Wire. A Technology for Harvesting Electricity from the Environment. Nano Letters, 2006, 6, 1656-1662.	4.5	384
17	Flexible and cross-linked N-doped carbon nanofiber network for high performance freestanding supercapacitor electrode. Nano Energy, 2015, 15, 66-74.	8.2	384
18	Solar-driven simultaneous steam production and electricity generation from salinity. Energy and Environmental Science, 2017, 10, 1923-1927.	15.6	380

#	Article	IF	CITATIONS
19	Scalable salt-templated synthesis of two-dimensional transition metal oxides. Nature Communications, 2016, 7, 11296.	5.8	379
20	Paperâ€Based Supercapacitors for Selfâ€Powered Nanosystems. Angewandte Chemie - International Edition, 2012, 51, 4934-4938.	7.2	364
21	Salt-Templated Synthesis of 2D Metallic MoN and Other Nitrides. ACS Nano, 2017, 11, 2180-2186.	7.3	359
22	Paper-based solid-state supercapacitors with pencil-drawing graphite/polyaniline networks hybrid electrodes. Nano Energy, 2013, 2, 1071-1078.	8.2	348
23	Supersensitive, Fastâ€Response Nanowire Sensors by Using Schottky Contacts. Advanced Materials, 2010, 22, 3327-3332.	11.1	311
24	Unique elastic N-doped carbon nanofibrous microspheres with hierarchical porosity derived from renewable chitin for high rate supercapacitors. Nano Energy, 2016, 27, 482-491.	8.2	299
25	A Bamboo-Inspired Nanostructure Design for Flexible, Foldable, and Twistable Energy Storage Devices. Nano Letters, 2015, 15, 3899-3906.	4.5	296
26	Thermosensitive crystallization–boosted liquid thermocells for low-grade heat harvesting. Science, 2020, 370, 342-346.	6.0	289
27	Allâ€Printed Porous Carbon Film for Electricity Generation from Evaporationâ€Đriven Water Flow. Advanced Functional Materials, 2017, 27, 1700551.	7.8	284
28	Piezoelectric-Potential-Controlled Polarity-Reversible Schottky Diodes and Switches of ZnO Wires. Nano Letters, 2008, 8, 3973-3977.	4.5	279
29	A Lowâ€Cost, Selfâ€Standing NiCo ₂ O ₄ @CNT/CNT Multilayer Electrode for Flexible Asymmetric Solidâ€State Supercapacitors. Advanced Functional Materials, 2017, 27, 1702160.	7.8	277
30	Finger typing driven triboelectric nanogenerator and its use for instantaneously lighting up LEDs. Nano Energy, 2013, 2, 491-497.	8.2	264
31	Rapid mass production of two-dimensional metal oxides and hydroxides via the molten salts method. Nature Communications, 2017, 8, 15630.	5.8	258
32	Aqueous thermogalvanic cells with a high Seebeck coefficient for low-grade heat harvest. Nature Communications, 2018, 9, 5146.	5.8	255
33	An Aqueous Znâ€ion Hybrid Supercapacitor with High Energy Density and Ultrastability up to 80 000 Cycles. Advanced Energy Materials, 2019, 9, 1902915.	10.2	244
34	Lateral nanowire/nanobelt based nanogenerators, piezotronics and piezo-phototronics. Materials Science and Engineering Reports, 2010, 70, 320-329.	14.8	223
35	Growth and field-emission property of tungsten oxide nanotip arrays. Applied Physics Letters, 2005, 87, 223108.	1.5	219
36	A paper-based nanogenerator as a power source and active sensor. Energy and Environmental Science, 2013, 6, 1779.	15.6	218

#	Article	IF	CITATIONS
37	Wearable Thermocells Based on Gel Electrolytes for the Utilization of Body Heat. Angewandte Chemie - International Edition, 2016, 55, 12050-12053.	7.2	210
38	Fiberâ€Based Energy Conversion Devices for Humanâ€Body Energy Harvesting. Advanced Materials, 2020, 32, e1902034.	11.1	204
39	Flexible Transparent Molybdenum Trioxide Nanopaper for Energy Storage. Advanced Materials, 2016, 28, 6353-6358.	11.1	194
40	Al-doped α-MnO2 for high mass-loading pseudocapacitor with excellent cycling stability. Nano Energy, 2015, 11, 226-234.	8.2	186
41	Freestanding functionalized carbon nanotube-based electrode for solid-state asymmetric supercapacitors. Nano Energy, 2014, 6, 1-9.	8.2	182
42	Effects of piezoelectric potential on the transport characteristics of metal-ZnO nanowire-metal field effect transistor. Journal of Applied Physics, 2009, 105, 113707.	1.1	176
43	Interfacial Solarâ€ŧoâ€Heat Conversion for Desalination. Advanced Energy Materials, 2019, 9, 1900310.	10.2	174
44	Induced Potential in Porous Carbon Films through Water Vapor Absorption. Angewandte Chemie - International Edition, 2016, 55, 8003-8007.	7.2	170
45	Cellular Polypropylene Piezoelectret for Human Body Energy Harvesting and Health Monitoring. Advanced Functional Materials, 2015, 25, 4788-4794.	7.8	159
46	Three-dimensional WO3 nanostructures on carbon paper: photoelectrochemical property and visible light driven photocatalysis. Chemical Communications, 2011, 47, 5804.	2.2	158
47	Stretchable Selfâ€Powered Fiberâ€Based Strain Sensor. Advanced Functional Materials, 2015, 25, 1798-1803.	7.8	155
48	Hyper-stretchable self-powered sensors based on electrohydrodynamically printed, self-similar piezoelectric nano/microfibers. Nano Energy, 2017, 40, 432-439.	8.2	150
49	Freestanding MoO3â^' nanobelt/carbon nanotube films for Li-ion intercalation pseudocapacitors. Nano Energy, 2014, 9, 355-363.	8.2	146
50	Surface functional modification boosts the output of an evaporation-driven water flow nanogenerator. Nano Energy, 2019, 58, 797-802.	8.2	145
51	High Surface Area Tunnels in Hexagonal WO ₃ . Nano Letters, 2015, 15, 4834-4838.	4.5	144
52	Piezoelectric Potential Gated Field-Effect Transistor Based on a Free-Standing ZnO Wire. Nano Letters, 2009, 9, 3435-3439.	4.5	132
53	Synthesis and field-emission properties of aligned MoO3 nanowires. Applied Physics Letters, 2003, 83, 2653-2655.	1.5	131
54	Paperâ€Based Active Tactile Sensor Array. Advanced Materials, 2015, 27, 7130-7136.	11.1	131

#	Article	IF	CITATIONS
55	A bio-inspired cilia array as the dielectric layer for flexible capacitive pressure sensors with high sensitivity and a broad detection range. Journal of Materials Chemistry A, 2019, 7, 27334-27346.	5.2	130
56	Mechanicalâ^'Electrical Triggers and Sensors Using Piezoelectric Micowires/Nanowires. Nano Letters, 2008, 8, 2725-2730.	4.5	126
57	A nanogenerator for harvesting airflow energy and light energy. Journal of Materials Chemistry A, 2014, 2, 2079-2087.	5.2	126
58	Ultrasensitive cellular fluorocarbon piezoelectret pressure sensor for self-powered human physiological monitoring. Nano Energy, 2017, 32, 42-49.	8.2	123
59	Dual functional transparent film for proximity and pressure sensing. Nano Research, 2014, 7, 1488-1496.	5.8	122
60	Electrospun polyetherimide electret nonwoven for bi-functional smart face mask. Nano Energy, 2017, 34, 562-569.	8.2	119
61	Noncontact Heartbeat and Respiration Monitoring Based on a Hollow Microstructured Self-Powered Pressure Sensor. ACS Applied Materials & Interfaces, 2018, 10, 3660-3667.	4.0	119
62	Transferable self-welding silver nanowire network as high performance transparent flexible electrode. Nanotechnology, 2013, 24, 335202.	1.3	116
63	Saltâ€Assisted Synthesis of 2D Materials. Advanced Functional Materials, 2020, 30, 1908486.	7.8	115
64	Hierarchical elastomer tuned self-powered pressure sensor for wearable multifunctional cardiovascular electronics. Nano Energy, 2020, 70, 104460.	8.2	113
65	Liquid-state thermocells: Opportunities and challenges for low-grade heat harvesting. Joule, 2021, 5, 768-779.	11.7	113
66	Bioâ€Inspired Hybrid Dielectric for Capacitive and Triboelectric Tactile Sensors with High Sensitivity and Ultrawide Linearity Range. Advanced Materials, 2021, 33, e2100859.	11.1	113
67	Thermal–Electric Nanogenerator Based on the Electrokinetic Effect in Porous Carbon Film. Advanced Energy Materials, 2018, 8, 1702481.	10.2	111
68	Dual-Mode Electronic Skin with Integrated Tactile Sensing and Visualized Injury Warning. ACS Applied Materials & Interfaces, 2017, 9, 37493-37500.	4.0	110
69	Highly Efficient Water Harvesting with Optimized Solar Thermal Membrane Distillation Device. Global Challenges, 2018, 2, 1800001.	1.8	108
70	Piezoelectrets for wearable energy harvesters and sensors. Nano Energy, 2019, 65, 104033.	8.2	107
71	Surface charge self-recovering electret film for wearable energy conversion in a harsh environment. Energy and Environmental Science, 2016, 9, 3085-3091.	15.6	106
72	Investigations into the origin of pseudocapacitive behavior of Mn ₃ O ₄ electrodes using in operando Raman spectroscopy. Journal of Materials Chemistry A, 2015, 3, 7338-7344.	5.2	104

#	Article	IF	CITATIONS
73	Atmosphericâ€Pressure Synthesis of 2D Nitrogenâ€Rich Tungsten Nitride. Advanced Materials, 2018, 30, e1805655.	11.1	104
74	Unveiling the Effects of Alkali Metal Ions Intercalated in Layered MnO ₂ for Formaldehyde Catalytic Oxidation. ACS Catalysis, 2020, 10, 10021-10031.	5.5	102
75	Highly conductive and flexible molybdenum oxide nanopaper for high volumetric supercapacitor electrode. Journal of Materials Chemistry A, 2017, 5, 2897-2903.	5.2	101
76	Atomically Thin 2D Transition Metal Oxides: Structural Reconstruction, Interaction with Substrates, and Potential Applications. Advanced Materials Interfaces, 2019, 6, 1801160.	1.9	100
77	Construction and Performance Characterization of α-Fe ₂ O ₃ /rGO Composite for Long-Cycling-Life Supercapacitor Anode. ACS Sustainable Chemistry and Engineering, 2017, 5, 5067-5074.	3.2	98
78	Self-Powered Human-Interactive Transparent Nanopaper Systems. ACS Nano, 2015, 9, 7399-7406.	7.3	97
79	Gasochromic effect and relative mechanism of WO3nanowire films. Nanotechnology, 2007, 18, 205701.	1.3	95
80	Electricity generation from water droplets via capillary infiltrating. Nano Energy, 2018, 48, 211-216.	8.2	94
81	Rich Alkali Ions Preintercalated Vanadium Oxides for Durable and Fast Zinc-Ion Storage. ACS Energy Letters, 2021, 6, 2111-2120.	8.8	94
82	Tungsten Oxide Nanowires Grown on Carbon Cloth as a Flexible Cold Cathode. Advanced Materials, 2010, 22, 5292-5296.	11.1	93
83	Intercalation of cations into partially reduced molybdenum oxide for high-rate pseudocapacitors. Energy Storage Materials, 2015, 1, 1-8.	9.5	92
84	P-N conversion in thermogalvanic cells induced by thermo-sensitive nanogels for body heat harvesting. Nano Energy, 2019, 57, 473-479.	8.2	89
85	Wearable Affective Robot. IEEE Access, 2018, 6, 64766-64776.	2.6	86
86	Field emission study of SiC nanowires/nanorods directly grown on SiC ceramic substrate. Applied Physics Letters, 2006, 89, 023118.	1,5	85
87	Toward high output-power nanogenerator. Applied Physics Letters, 2008, 92, .	1.5	84
88	Highâ€Performance Hazy Silver Nanowire Transparent Electrodes through Diameter Tailoring for Semitransparent Photovoltaics. Advanced Functional Materials, 2018, 28, 1705409.	7.8	84
89	Synthesis and Characterization of Self-Standing and Highly Flexible δ-MnO ₂ @CNTs/CNTs Composite Films for Direct Use of Supercapacitor Electrodes. ACS Applied Materials & Interfaces, 2016, 8, 23721-23728.	4.0	83
90	Controlled growth of LaFeO ₃ nanoparticles on reduced graphene oxide for highly efficient photocatalysis. Nanoscale, 2016, 8, 752-756.	2.8	83

#	Article	IF	CITATIONS
91	Self-Cleaning Flexible Infrared Nanosensor Based on Carbon Nanoparticles. ACS Nano, 2011, 5, 4007-4013.	7.3	82
92	Vertically Aligned Zn2SiO4 Nanotube/ZnO Nanowire Heterojunction Arrays. Small, 2007, 3, 622-626.	5.2	78
93	Twoâ€Dimensional Layered Heterostructures Synthesized from Core–Shell Nanowires. Angewandte Chemie - International Edition, 2015, 54, 8957-8960.	7.2	78
94	Distinctive Construction of Chitin-Derived Hierarchically Porous Carbon Microspheres/Polyaniline for High-Rate Supercapacitors. ACS Applied Materials & amp; Interfaces, 2018, 10, 28918-28927.	4.0	78
95	High performance flexible sensor based on inorganic nanomaterials. Sensors and Actuators B: Chemical, 2013, 176, 522-533.	4.0	77
96	Multilayered paper-like electrodes composed of alternating stacked mesoporous Mo ₂ N nanobelts and reduced graphene oxide for flexible all-solid-state supercapacitors. Journal of Materials Chemistry A, 2015, 3, 14617-14624.	5.2	75
97	Ultra-stretchable, bio-inspired ionic skins that work stably in various harsh environments. Journal of Materials Chemistry A, 2018, 6, 24114-24119.	5.2	75
98	Natural Materials Assembled, Biodegradable, and Transparent Paper-Based Electret Nanogenerator. ACS Applied Materials & Interfaces, 2016, 8, 35587-35592.	4.0	74
99	Ethanol reduced molybdenum trioxide for Li-ion capacitors. Nano Energy, 2016, 26, 100-107.	8.2	74
100	Carbon Nanoparticles on Carbon Fabric for Flexible and Highâ€Performance Field Emitters. Advanced Functional Materials, 2011, 21, 2150-2154.	7.8	72
101	2D vanadium doped manganese dioxides nanosheets for pseudocapacitive energy storage. Nanoscale, 2015, 7, 16094-16099.	2.8	71
102	Microwave Combustion for Rapidly Synthesizing Poreâ€Sizeâ€Controllable Porous Graphene. Advanced Functional Materials, 2018, 28, 1800382.	7.8	70
103	Cloth-Based Power Shirt for Wearable Energy Harvesting and Clothes Ornamentation. ACS Applied Materials & Interfaces, 2015, 7, 14912-14916.	4.0	63
104	Tough hydrogel diodes with tunable interfacial adhesion for safe and durable wearable batteries. Nano Energy, 2018, 48, 569-574.	8.2	63
105	Architectural Engineering of Nanowire Network Fine Pattern for 30 μm Wide Flexible Quantum Dot Light-Emitting Diode Application. ACS Nano, 2016, 10, 10023-10030.	7.3	62
106	Synthesis of silicon carbide nanowires in a catalyst-assisted process. Chemical Physics Letters, 2002, 356, 511-514.	1.2	61
107	Synthesis of single crystalline two-dimensional transition-metal phosphides <i>via</i> a salt-templating method. Nanoscale, 2018, 10, 6844-6849.	2.8	61
108	Living with I-Fabric: Smart Living Powered by Intelligent Fabric and Deep Analytics. IEEE Network, 2020, 34, 156-163.	4.9	61

#	Article	IF	CITATIONS
109	Synthesis of crystalline alumina nanowires and nanotrees. Chemical Physics Letters, 2002, 365, 505-508.	1.2	60
110	Anisotropic Third-Order Optical Nonlinearity of a single ZnO Micro/Nanowire. Nano Letters, 2012, 12, 833-838.	4.5	60
111	Mass Production of Highâ€Quality Transition Metal Dichalcogenides Nanosheets via a Molten Salt Method. Advanced Functional Materials, 2019, 29, 1900649.	7.8	59
112	Theoretical Study of Cellular Piezoelectret Generators. Advanced Functional Materials, 2016, 26, 1964-1974.	7.8	58
113	Ultraviolet-visible emission from three-dimensional WO3â^'x nanowire networks. Applied Physics Letters, 2007, 91, .	1.5	57
114	Band gap engineering of MnO ₂ through in situ Al-doping for applicable pseudocapacitors. RSC Advances, 2016, 6, 13914-13919.	1.7	56
115	Unraveling the solvent induced welding of silver nanowires for high performance flexible transparent electrodes. Nanoscale, 2018, 10, 12981-12990.	2.8	55
116	Bandgap engineering of Ga <i>_x</i> Zn _{1<i>–x</i>} O nanowire arrays for wavelengthâ€ŧunable lightâ€emitting diodes. Laser and Photonics Reviews, 2014, 8, 429-435.	4.4	52
117	Molybdenum trioxide nanopaper as a dual gas sensor for detecting trimethylamine and hydrogen sulfide. RSC Advances, 2017, 7, 3680-3685.	1.7	52
118	4-Butylbenzenesulfonate modified polypyrrole paper for supercapacitor with exceptional cycling stability. Energy Storage Materials, 2018, 12, 191-196.	9.5	51
119	Flexible microfluidics nanogenerator based on the electrokinetic conversion. Nano Energy, 2016, 30, 684-690.	8.2	50
120	Tilted magnetic micropillars enabled dual-mode sensor for tactile/touchless perceptions. Nano Energy, 2020, 78, 105382.	8.2	49
121	Activated carbon derived from melaleuca barks for outstanding high-rate supercapacitors. Nanotechnology, 2015, 26, 304004.	1.3	48
122	Sandwiched Composite Fluorocarbon Film for Flexible Electret Generator. Advanced Electronic Materials, 2016, 2, 1500408.	2.6	48
123	Sensitivity-Enhanced Wearable Active Voiceprint Sensor Based on Cellular Polypropylene Piezoelectret. ACS Applied Materials & Interfaces, 2017, 9, 23716-23722.	4.0	48
124	Highly rate and cycling stable electrode materials constructed from polyaniline/cellulose nanoporous microspheres. Journal of Materials Chemistry A, 2015, 3, 16424-16429.	5.2	47
125	Solution processed flexible hybrid cell for concurrently scavenging solar and mechanical energies. Nano Energy, 2015, 16, 301-309.	8.2	45
126	Wearable Thermocells Based on Gel Electrolytes for the Utilization of Body Heat. Angewandte Chemie, 2016, 128, 12229-12232.	1.6	44

#	Article	IF	CITATIONS
127	Nanowire as pico-gram balance at workplace atmosphere. Solid State Communications, 2006, 139, 222-226.	0.9	42
128	Microwave Combustion for Modification of Transition Metal Oxides. Advanced Functional Materials, 2016, 26, 7263-7270.	7.8	42
129	Simultaneous Solar Steam and Electricity Generation from Synergistic Salinityâ€Temperature Gradient. Advanced Energy Materials, 2021, 11, 2100481.	10.2	42
130	Synthesis of large-scaled MoO2 nanowire arrays. Chemical Physics Letters, 2003, 382, 443-446.	1.2	40
131	Highâ€Performance Hybrid Supercapacitor Based on Grapheneâ€Wrapped Mesoporous <i>T</i> â€Nb ₂ O ₅ Nanospheres Anode and Mesoporous Carbonâ€Coated Graphene Cathode. ChemElectroChem, 2016, 3, 1360-1368.	1.7	40
132	3D nanoporous ZnWO4 nanoparticles with excellent electrochemical performances for supercapacitors. Materials Letters, 2016, 177, 34-38.	1.3	39
133	SiC-Shell Nanostructures Fabricated by Replicating ZnO Nano-objects: A Technique for Producing Hollow Nanostructures of Desired Shape. Small, 2006, 2, 1344-1347.	5.2	38
134	Chargeâ€Gradient Hydrogels Enable Direct Zero Liquid Discharge for Hypersaline Wastewater Management. Advanced Materials, 2021, 33, e2100141.	11.1	37
135	Anisotropic Magnetite Nanorods for Enhanced Magnetic Hyperthermia. Chemistry - an Asian Journal, 2016, 11, 2996-3000.	1.7	36
136	Hybridâ€Piezoelectret Based Highly Efficient Ultrasonic Energy Harvester for Implantable Electronics. Advanced Functional Materials, 2022, 32, .	7.8	34
137	Electrochromic properties of WO3 nanowire films and mechanism responsible for the near infrared absorption. Journal of Applied Physics, 2007, 101, 114303.	1.1	33
138	H _x MoO _{3â^'y} nanobelts with sea water as electrolyte for high-performance pseudocapacitors and desalination devices. Journal of Materials Chemistry A, 2015, 3, 17217-17223.	5.2	33
139	Theoretical study and structural optimization of a flexible piezoelectret-based pressure sensor. Journal of Materials Chemistry A, 2018, 6, 5065-5070.	5.2	33
140	Cryoâ€Transferred Ultrathin and Stretchable Epidermal Electrodes. Small, 2020, 16, e2000450.	5.2	33
141	Metal-free and non-fluorine paper-based generator. Nano Energy, 2015, 14, 236-244.	8.2	32
142	Selfâ€Powered Multimodal Temperature and Force Sensor Basedâ€On a Liquid Droplet. Angewandte Chemie - International Edition, 2016, 55, 15864-15868.	7.2	32
143	A Novel Photoelectric Conversion Yarn by Integrating Photomechanical Actuation and the Electrostatic Effect. Advanced Materials, 2016, 28, 10744-10749.	11.1	31
144	An aqueous 2.1 V pseudocapacitor with MXene and V-MnO2 electrodes. Nano Research, 2022, 15, 535-541.	5.8	31

#	Article	IF	CITATIONS
145	Cost-effective n-type thermocells enabled by thermosensitive crystallizations and 3D multi-structured electrodes. Nano Energy, 2022, 93, 106795.	8.2	31
146	Electrokinetic Supercapacitor for Simultaneous Harvesting and Storage of Mechanical Energy. ACS Applied Materials & Interfaces, 2018, 10, 8010-8015.	4.0	29
147	Wearable 3.0: From Smart Clothing to Wearable Affective Robot. IEEE Network, 2019, 33, 8-14.	4.9	28
148	Electrostatic Assembly of Laminated Transparent Piezoelectrets for Epidermal and Implantable Electronics. Nano Energy, 2021, 89, 106450.	8.2	28
149	Recent Applications of Different Microstructure Designs in High Performance Tactile Sensors: A Review. IEEE Sensors Journal, 2021, 21, 10291-10303.	2.4	27
150	Measuring the transport property of ZnO tetrapod using in situ nanoprobes. Chemical Physics Letters, 2010, 484, 96-99.	1.2	26
151	Redox of naphthalenediimide radicals in a 3D polyimide for stable Li-ion batteries. Chemical Communications, 2021, 57, 7810-7813.	2.2	26
152	Output enhanced compact multilayer flexible nanogenerator for self-powered wireless remote system. Journal of Materials Chemistry A, 2017, 5, 12787-12792.	5.2	25
153	Self-Cleaning Porous Surfaces for Dry Condensation. ACS Applied Materials & Interfaces, 2018, 10, 26759-26764.	4.0	24
154	Synthesis and Raman spectroscopic study of W ₂₀ O ₅₈ nanowires. Journal Physics D: Applied Physics, 2008, 41, 115305.	1.3	23
155	Cross-linked carbon network with hierarchical porous structure for high performance solid-state electrochemical capacitor. Journal of Power Sources, 2016, 327, 488-494.	4.0	23
156	Rapid synthesis of size-tunable transition metal carbide nanodots under ambient conditions. Journal of Materials Chemistry A, 2019, 7, 14489-14495.	5.2	22
157	Flexible THV/COC Piezoelectret Nanogenerator for Wide-Range Pressure Sensing. ACS Applied Materials & Interfaces, 2018, 10, 29675-29683.	4.0	21
158	Rationally exfoliating chitin into 2D hierarchical porous carbon nanosheets for high-rate energy storage. Nano Research, 2020, 13, 1604-1613.	5.8	21
159	Boosting the Efficient Energy Output of Electret Nanogenerators by Suppressing Air Breakdown under Ambient Conditions. ACS Applied Materials & Interfaces, 2019, 11, 3984-3989.	4.0	20
160	High-temperature bearable polysulfonamide/polyacrylonitrile composite nanofibers for high-efficiency PM2.5 filtration. Composites Communications, 2021, 23, 100582.	3.3	19
161	All-Day Thermogalvanic Cells for Environmental Thermal Energy Harvesting. Research, 2019, 2019, 2460953.	2.8	18
162	Electrospun Polytetrafluoroethylene Nanofibrous Membrane for High-Performance Self-Powered Sensors. Nanoscale Research Letters, 2019, 14, 251.	3.1	17

#	Article	IF	CITATIONS
163	Heat-triggered high-performance thermocells enable a self-powered forest fire alarm. Journal of Materials Chemistry A, 2021, 9, 26119-26126.	5.2	17
164	Improved Stability of Metal Nanowires via Electron Beam Irradiation Induced Surface Passivation. ACS Applied Materials & Interfaces, 2019, 11, 12195-12201.	4.0	16
165	High-efficiency solar heat storage enabled by adaptive radiation management. Cell Reports Physical Science, 2021, 2, 100533.	2.8	15
166	Stabilization of layered manganese oxide by substitutional cation doping. Journal of Materials Chemistry A, 2019, 7, 7118-7127.	5.2	14
167	Electric field drives the nonlinear resonance of a piezoelectric nanowire. Solid State Communications, 2007, 144, 118-123.	0.9	13
168	Fabrication of TiO ₂ coated porous CoMn ₂ O ₄ submicrospheres for advanced lithium-ion anodes. RSC Advances, 2017, 7, 21214-21220.	1.7	13
169	Micrometer-Scale Kirkendall Effect in the Formation of High-Temperature-Resistant Cr ₂ O ₃ /Al ₂ O ₃ Solid Solution Hollow Fibers. Chemistry of Materials, 2018, 30, 5978-5986.	3.2	13
170	Large-scale synthesis of size- and thickness-tunable conducting polymer nanosheets <i>via</i> a salt-templated method. Journal of Materials Chemistry A, 2019, 7, 24929-24936.	5.2	12
171	Thermosensitive-CsI3-crystal-driven high-power Iâ^'/I3â^' thermocells. Cell Reports Physical Science, 2022, 3, 100737.	2.8	12
172	Three-dimensional ZnO porous films for self-cleaning ultraviolet photodetectors. RSC Advances, 2015, 5, 85969-85973.	1.7	11
173	Well-controlled exchange bias effect in MnO@Mn3O4 core-shell nanoparticles with an inverted coupling structures. AIP Advances, 2017, 7, .	0.6	10
174	Novel porous ultrathin NiO nanosheets for highly efficient water vapor adsorption-desorption. Separation and Purification Technology, 2019, 226, 299-303.	3.9	10
175	A millisecond response and microwatt power-consumption gas sensor: Realization based on cross-stacked individual Pt-coated WO3 nanorods. Sensors and Actuators B: Chemical, 2021, 346, 130545.	4.0	10
176	Synthesis of silicon carbide nano-junctions in a catalyst-assisted process. Chemical Physics Letters, 2002, 364, 608-611.	1.2	8
177	Energy Harvest from Organics Degradation by Two-Dimensional K ⁺ -Intercalated Manganese Oxide. ACS Applied Materials & Interfaces, 2017, 9, 41233-41238.	4.0	8
178	Achieving a high cutting-off frequency in the oriented CoFe2O4 nanocubes. Applied Physics Letters, 2017, 111, .	1.5	8
179	Supercapacitors: Freestanding Mesoporous VN/CNT Hybrid Electrodes for Flexible Allâ€Solidâ€State Supercapacitors (Adv. Mater. 36/2013). Advanced Materials, 2013, 25, 4954-4954.	11.1	6
180	Selfâ€Powered Multimodal Temperature and Force Sensor Basedâ€On a Liquid Droplet. Angewandte Chemie, 2016, 128, 16096-16100.	1.6	4

#	Article	IF	CITATIONS
181	A simple infrared nanosensor array based on carbon nanoparticles. Frontiers of Optoelectronics, 2012, 5, 266-270.	1.9	3
182	LixNa2â^'xW4O13 nanosheet for scalable electrochromic device. Frontiers of Optoelectronics, 2021, 14, 298-310.	1.9	3
183	Additiveâ€Free Ultrastable Hydrated Vanadium Oxide Sol/Carbon Nanotube Ink for Durable and Highâ€Power Aqueous Zinc″on Battery. Advanced Materials Interfaces, 2022, 9, .	1.9	3
184	Assembly of two-dimensional nanofluidic channel with high proton conductivity using single-layer MnO2 nanosheets. Science China Materials, 2022, 65, 2578-2584.	3.5	3
185	Nanopiezotronics and Nanogenerators. , 2012, , 115-147.		1
186	Bio-inspired intelligent evaporation modulation in a thermo-sensitive nanogel colloid solution for self-thermoregulation. Physical Chemistry Chemical Physics, 2017, 19, 16312-16316.	1.3	1
187	Liquid-state thermocells for low-grade heat harvesting. , 2022, , 141-162.		1
188	A Single SnO2 Nanowire-Based Microelectrode. Methods in Molecular Biology, 2011, 726, 111-117.	0.4	0
189	High performance flexible supercapacitors based on multilayer PANI/Au electrodes. , 2013, , .		0
190	High performance of silver nanowires transparent conductors with vertically aligned structure. , 2015, , .		0
191	Porous Carbon Fluidtronics for Electricity Generation and Self-powered sensing. , 2018, , .		0