Ki-Hun Jeong

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9479197/publications.pdf

Version: 2024-02-01

113	4,511	38	65
papers	citations	h-index	g-index
115	115	115	5129
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Biologically Inspired Artificial Compound Eyes. Science, 2006, 312, 557-561.	6.0	585
2	Tunable liquid-filled microlens array integrated with microfluidic network. Optics Express, 2003, 11, 2370.	1.7	359
3	Reagentless mechanical cell lysis by nanoscale barbs in microchannels for sample preparation. Lab on A Chip, 2003, 3, 287.	3.1	224
4	Glass Nanopillar Arrays with Nanogapâ€Rich Silver Nanoislands for Highly Intense Surface Enhanced Raman Scattering. Advanced Materials, 2012, 24, 2234-2237.	11.1	198
5	Tunable microdoublet lens array. Optics Express, 2004, 12, 2494.	1.7	178
6	Enhancement of Terahertz Pulse Emission by Optical Nanoantenna. ACS Nano, 2012, 6, 2026-2031.	7.3	139
7	Biologically inspired LED lens from cuticular nanostructures of firefly lantern. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 18674-18678.	3.3	105
8	Terahertz photoconductive antenna with metal nanoislands. Optics Express, 2012, 20, 25530.	1.7	104
9	Repeated Solid-state Dewetting of Thin Gold Films for Nanogap-rich Plasmonic Nanoislands. Scientific Reports, 2015, 5, 14790.	1.6	104
10	Plasmonic Schirmer Strip for Human Tear-Based Gouty Arthritis Diagnosis Using Surface-Enhanced Raman Scattering. ACS Nano, 2017, 11, 438-443.	7.3	103
11	Theoretical and experimental study towards a nanogap dielectric biosensor. Biosensors and Bioelectronics, 2005, 20, 1320-1326.	5.3	94
12	Biologically Inspired Organic Light-Emitting Diodes. Nano Letters, 2016, 16, 2994-3000.	4.5	78
13	Fluorescent microscopy beyond diffraction limits using speckle illumination and joint support recovery. Scientific Reports, 2013, 3, 2075.	1.6	74
14	Monolithic Polymer Microlens Arrays with High Numerical Aperture and High Packing Density. ACS Applied Materials & Samp; Interfaces, 2015, 7, 2160-2165.	4.0	71
15	Artificial ommatidia by self-aligned microlenses and waveguides. Optics Letters, 2005, 30, 5.	1.7	68
16	Multifocal microlens arrays using multilayer photolithography. Optics Express, 2020, 28, 9082.	1.7	63
17	A Deformable Nanoplasmonic Membrane Reveals Universal Correlations Between Plasmon Resonance and Surface Enhanced Raman Scattering. Advanced Materials, 2014, 26, 4510-4514.	11.1	62
18	Silver nanoislands on cellulose fibers for chromatographic separation and ultrasensitive detection of small molecules. Light: Science and Applications, 2016, 5, e16009-e16009.	7.7	60

#	Article	IF	CITATIONS
19	Forward imaging OCT endoscopic catheter based on MEMS lens scanning. Optics Letters, 2012, 37, 2673.	1.7	59
20	Frequency selection rule for high definition and high frame rate Lissajous scanning. Scientific Reports, 2017, 7, 14075.	1.6	59
21	Microfabricated suspensions for electrical connections on the tunable elastomer membrane. Applied Physics Letters, 2004, 85, 6051-6053.	1.5	58
22	Nanoplasmonic On-Chip PCR for Rapid Precision Molecular Diagnostics. ACS Applied Materials & Samp; Interfaces, 2020, 12, 12533-12540.	4.0	57
23	Ultrafast and Real-Time Nanoplasmonic On-Chip Polymerase Chain Reaction for Rapid and Quantitative Molecular Diagnostics. ACS Nano, 2021, 15, 10194-10202.	7.3	55
24	Beyond the SERS: Raman Enhancement of Small Molecules Using Nanofluidic Channels with Localized Surface Plasmon Resonance. Small, 2011, 7, 184-188.	5.2	54
25	Xenos peckii vision inspires an ultrathin digital camera. Light: Science and Applications, 2018, 7, 80.	7.7	54
26	Biologically inspired ultrathin arrayed camera for high-contrast and high-resolution imaging. Light: Science and Applications, 2020, 9, 28.	7.7	53
27	In situ dynamic measurements of the enhanced SERS signal using an optoelectrofluidic SERS platform. Lab on A Chip, 2011, 11, 2518.	3.1	52
28	Nanoplasmonic Alloy of Au/Ag Nanocomposites on Paper Substrate for Biosensing Applications. ACS Applied Materials & District Samp; Interfaces, 2018, 10, 290-295.	4.0	51
29	Spread spectrum SERS allows label-free detection of attomolar neurotransmitters. Nature Communications, 2021, 12, 159.	5.8	50
30	Microscanners for optical endomicroscopic applications. Micro and Nano Systems Letters, 2017, 5, .	1.7	49
31	Paper-Based Biochip Assays and Recent Developments: A Review. Biochip Journal, 2018, 12, 1-10.	2.5	49
32	Lissajous fiber scanning for forward viewing optical endomicroscopy using asymmetric stiffness modulation. Optics Express, 2014, 22, 5818.	1.7	48
33	Optofluidic SERS chip with plasmonic nanoprobes self-aligned along microfluidic channels. Lab on A Chip, 2014, 14, 865.	3.1	47
34	Engineering hot spots on plasmonic nanopillar arrays for SERS: A review. Biochip Journal, 2016, 10, 297-309.	2.5	44
35	Electrothermal MEMS fiber scanner for optical endomicroscopy. Optics Express, 2016, 24, 3903.	1.7	44
36	Bioplasmonic Alloyed Nanoislands Using Dewetting of Bilayer Thin Films. ACS Applied Materials & Samp; Interfaces, 2017, 9, 37154-37159.	4.0	44

#	Article	IF	Citations
37	Mining the Smartness of Insect Ultrastructures for Advanced Imaging and Illumination. Advanced Functional Materials, 2018, 28, 1705912.	7.8	44
38	Nanoislands as plasmonic materials. Nanoscale, 2019, 11, 8651-8664.	2.8	39
39	Subwavelength silicon through-hole arrays as an all-dielectric broadband terahertz gradient index metamaterial. Applied Physics Letters, 2014, 105, .	1.5	36
40	A novel microfabrication of a self-aligned vertical comb drive on a single SOI wafer for optical MEMS applications. Journal of Micromechanics and Microengineering, 2005, 15, 277-281.	1.5	35
41	Lissajous Scanning Two-photon Endomicroscope for In vivo Tissue Imaging. Scientific Reports, 2019, 9, 3560.	1.6	35
42	High Contrast Ultrathin Lightâ€Field Camera Using Inverted Microlens Arrays with Metal–Insulator–Metal Optical Absorber. Advanced Optical Materials, 2021, 9, 2001657.	3.6	33
43	Nanogap capacitors: Sensitivity to sample permittivity changes. Journal of Applied Physics, 2006, 99, 024305.	1.1	31
44	Biologically Inspired Biophotonic Surfaces with Selfâ€Antireflection. Small, 2014, 10, 2558-2563.	5.2	30
45	Monolithic polymer microlens arrays with antireflective nanostructures. Applied Physics Letters, 2012, 101, 203102.	1.5	29
46	165 mm diameter forward-viewing confocal endomicroscopic catheter using a flip-chip bonded electrothermal MEMS fiber scanner. Optics Express, 2018, 26, 4780.	1.7	28
47	Micromachined tethered silicon oscillator for an endomicroscopic Lissajous fiber scanner. Optics Letters, 2014, 39, 6675.	1.7	27
48	Scanning MEMS Mirror for High Definition and High Frame Rate Lissajous Patterns. Micromachines, 2019, 10, 67.	1.4	26
49	Wear-life diagram of TiN-coated steels. Wear, 1998, 217, 175-181.	1.5	25
50	Planar Emulation of Natural Compound Eyes. Small, 2012, 8, 2169-2173.	5.2	24
51	Electrokinetic Preconcentration of Small Molecules Within Volumetric Electromagnetic Hotspots in Surface Enhanced Raman Scattering. Small, 2015, 11, 2487-2492.	5.2	23
52	Batch fabrication of functional optical elements on a fiber facet using DMD based maskless lithography. Optics Express, 2017, 25, 16854.	1.7	23
53	Antireflective glass nanoholes on optical lenses. Optics Express, 2018, 26, 14786.	1.7	23
54	Compact stereo endoscopic camera using microprism arrays. Optics Letters, 2016, 41, 1285.	1.7	22

#	Article	IF	CITATIONS
55	Ag/Au Alloyed Nanoislands for Wafer-Level Plasmonic Color Filter Arrays. Scientific Reports, 2019, 9, 9082.	1.6	21
56	Micromachined lens microstages for two-dimensional forward optical scanning. Optics Express, 2010, 18, 16133.	1.7	20
57	Antireflective structures on highly flexible and large area elastomer membrane for tunable liquid-filled endoscopic lens. Nanoscale, 2019, 11, 856-861.	2.8	20
58	Direct force measurements of biomolecular interactions by nanomechanical force gauge. Applied Physics Letters, 2005, 86, 193901.	1.5	19
59	Fiber-optic plasmonic probe with nanogap-rich Au nanoislands for on-site surface-enhanced Raman spectroscopy using repeated solid-state dewetting. Journal of Biomedical Optics, 2019, 24, 1.	1.4	19
60	Micropatterned single lens for wide-angle light-emitting diodes. Optics Letters, 2010, 35, 823.	1.7	18
61	Colorimetric Schirmer strip for tear glucose detection. Biochip Journal, 2017, 11, 294-299.	2.5	17
62	Asymmetric optical microstructures driven by geometry-guided resist reflow. Optics Express, 2014, 22, 22089.	1.7	15
63	Au/Ag Bimetallic Nanocomposites as a Highly Sensitive Plasmonic Material. Plasmonics, 2019, 14, 407-413.	1.8	15
64	Rotational Offset Microlens Arrays for Highly Efficient Structured Pattern Projection. Advanced Optical Materials, 2020, 8, 2000395.	3.6	15
65	Optical MEMS devices for compact 3D surface imaging cameras. Micro and Nano Systems Letters, 2019, 7, .	1.7	14
66	Structural coloration of transmission light through self-aligned and complementary plasmonic nanostructures. Nanoscale, 2018, 10, 6313-6317.	2.8	13
67	Microfabricated ommatidia using a laser induced self-writing process for high resolution artificial compound eye optical systems. Optics Express, 2009, 17, 14761.	1.7	12
68	Electrothermal MEMS parallel plate rotation for single-imager stereoscopic endoscopes. Optics Express, 2016, 24, 9667.	1.7	12
69	Handheld endomicroscope using a fiber-optic harmonograph enables real-time and in vivo confocal imaging of living cell morphology and capillary perfusion. Microsystems and Nanoengineering, 2020, 6, 72.	3.4	12
70	On-chip Paper Electrophoresis for Ultrafast Screening of Infectious Diseases. Biochip Journal, 2021, 15, 305-311.	2.5	12
71	Nanoplasmonic biopatch for in vivo surface enhanced raman spectroscopy. Biochip Journal, 2014, 8, 289-294.	2.5	10
72	Extraordinary sensitivity enhancement of Ag-Au alloy nanohole arrays for label-free detection of Escherichia Coli. Biomedical Optics Express, 2021, 12, 2734.	1.5	9

#	Article	IF	Citations
73	Plasmon enhanced photoacoustic generation from volumetric electromagnetic hotspots. Nanoscale, 2016, 8, 757-761.	2.8	8
74	Biologically Inspired Ultrathin Contact Imager for Highâ€Resolution Imaging of Epidermal Ridges on Human Finger. Advanced Materials Technologies, 2021, 6, 2100090.	3.0	8
75	A new method of increasing numerical aperture of microlens for biophotonic MEMS. , 0, , .		7
76	Strong visible magnetic resonance of size-controlled silicon-nanoblock metasurfaces. Applied Physics Express, 2016, 9, 042001.	1.1	6
77	Objective-lens-free confocal endomicroscope using Lissajous scanning lensed-fiber. Journal of Optical Microsystems, 2021, 1, .	0.9	6
78	Handheld Laser Scanning Microscope Catheter for Real-Time and In vivo Confocal Microscopy using High Definition High Fame Rate Lissajous MEMS Mirror. Biomedical Optics Express, 2022, 13, 1497-1505.	1.5	6
79	A novel fabrication method of a vertical comb drive using a single SOI wafer for optical MEMS applications. , 0, , .		5
80	Pattern projector using superposition of double microlens arrays for hybrid 3D endoscope., 2018,,.		5
81	Tailoring Single Plasmonic Resonance for RGBâ€NIR Imaging Using Nanoimprinted Complementary Plasmonic Structures of Nanohole and Nanodisk Arrays. Advanced Optical Materials, 2021, 9, 2002036.	3.6	5
82	Large-Area and Ultrathin MEMS Mirror Using Silicon Micro Rim. Micromachines, 2021, 12, 754.	1.4	5
83	Lissajous scanning structured illumination microscopy. Biomedical Optics Express, 2020, 11, 5575.	1.5	5
84	Nanogap-based dielectric immunosensing., 0,,.		4
85	Millimeter scale electrostatic mirror with sub-wavelength holes for terahertz wave scanning. Applied Physics Letters, 2013, 102, 031111.	1.5	4
86	Extraordinary Figureâ€ofâ€Merit of Magnetic Resonance from Ultrathin Silicon Nanohole Membrane as Allâ€Dielectric Metamaterial. Advanced Optical Materials, 2017, 5, 1600628.	3.6	4
87	Angle-selective optical filter for highly sensitive reflection photoplethysmogram. Biomedical Optics Express, 2017, 8, 4361.	1.5	4
88	Machineâ€Learned Lightâ€Field Camera that Reads Facial Expression from Highâ€Contrast and Illumination Invariant 3D Facial Images. Advanced Intelligent Systems, 0, , 2100182.	3.3	4
89	Fully packaged video-rate confocal laser scanning endomicroscope using Lissajous fiber scanner. , 2017, , .		3
90	Visible range subtractive plasmonic color filter arrays using AG-AU alloyed nanoislands. , 2018, , .		3

#	Article	IF	Citations
91	Lissajous scanned variable structured illumination for dynamic stereo depth map. Optics Express, 2020, 28, 15173.	1.7	3
92	Tunable microdoublet lens array. , 0, , .		2
93	Polymeric synthesis of biomimetic artificial compound eyes., 0,,.		2
94	Compact OCT endomicroscopic catheter using flip-chip bonded Lissajous scanned electrothermal MEMS fiber scanner. , 2017, , .		2
95	Optically Patternable Metamaterial Below Diffraction Limit. ACS Applied Materials & Samp; Interfaces, 2017, 9, 18405-18409.	4.0	2
96	Concave micropatterned complex optical surfaces for wide angular illumination. , 2009, , .		1
97	Forward-viewing endoscopic OCT catheter using asymmetrically resonant fiber scanner. , 2013, , .		1
98	Antireflective structures for tunable liquid-filled lens. , 2017, , .		1
99	Ultrathin Compound Eye Camera for Super-Resolution Far-Field Imaging Using Light Absorbing Multiple Layers. , 2019, , .		1
100	Fully packaged confocal endomicroscopic system using Lissajous fiber scanner for indocyanine green in-vivo imaging. , 2018, , .		1
101	Stereoscopic facial imaging for pain assessment using rotational offset microlens arrays based structured illumination. Micro and Nano Systems Letters, 2021, 9, .	1.7	1
102	Piconewton regime measurements of biomolecular interactions by nanomechanical force gauge. , 0, , .		0
103	Laser induced self-aligned microlens and waveguide arrays using a self-writing process in a photosensitive polymer resin. , 2009, , .		0
104	Hierarchically structured LED lens for wide angle and high efficiency illumination. , 2012, , .		0
105	Planar Microâ€Optics: Planar Emulation of Natural Compound Eyes (Small 14/2012). Small, 2012, 8, 2130-2130.	5.2	0
106	Asymmetric microstructures for high light extraction and light pattern modulation. , 2013, , .		0
107	High intensity plasmon enhanced photoacoustic generation from polymeric absorber with 3D plasmonic nanostructures. , 2014, , .		0
108	Microprism arrays based stereoscopic endoscope. , 2015, , .		0

KI-HUN JEONG

#	Article	IF	CITATIONS
109	Optical low angle pass filter for high resolution robust photoplethysmography monitor. , 2017, , .		0
110	AG/AU nanocomposites on cellulose fiber matrices as plasmonic substrate for biosensing. , 2017, , .		0
111	Mouse tissue imaging using real-time Lissajous confocal endomicroscopic system. , 2017, , .		0
112	Endoscope camera using tunable liquid-filled lens with antireflective structures. , $2018, , .$		0
113	Biologically Inspired Ultrathin Array Cameras. , 2021, , .		0