Carrow I Wells

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9479132/publications.pdf

Version: 2024-02-01

430874 395702 1,446 44 18 33 citations h-index g-index papers 65 65 65 1888 all docs docs citations times ranked citing authors

#	Article	IF	CITATIONS
1	Non-canonical role of Hippo tumor suppressor serine/threonine kinase 3 STK3 in prostate cancer. Molecular Therapy, 2022, 30, 485-500.	8.2	17
2	Identification of Pyrimidine-Based Lead Compounds for Understudied Kinases Implicated in Driving Neurodegeneration. Journal of Medicinal Chemistry, 2022, 65, 1313-1328.	6.4	20
3	Use of AD Informer Set compounds to explore validity of novel targets in Alzheimer's disease pathology. Alzheimer's and Dementia: Translational Research and Clinical Interventions, 2022, 8, e12253.	3.7	3
4	Identification of 4â€anilinoâ€quin(az)oline as a cell active Protein Kinase Novel 3 (PKN3) inhibitor chemotype. ChemMedChem, 2022, , .	3.2	2
5	AD Informer Set: Chemical tools to facilitate Alzheimer's disease drug discovery. Alzheimer's and Dementia: Translational Research and Clinical Interventions, 2022, 8, e12246.	3.7	4
6	Temozolomide-induced guanine mutations create exploitable vulnerabilities of guanine-rich DNA and RNA regions in drug-resistant gliomas. Science Advances, 2022, 8, .	10.3	7
7	Host Kinase CSNK2 is a Target for Inhibition of Pathogenic SARS-like \hat{I}^2 -Coronaviruses. ACS Chemical Biology, 2022, 17, 1937-1950.	3.4	16
8	New tools for carbohydrate sulfation analysis: heparan sulfate 2- <i>O</i> -sulfotransferase (HS2ST) is a target for small-molecule protein kinase inhibitors. Biochemical Journal, 2021, 475, 2417-2433.	3.7	17
9	Towards a RIOK2 chemical probe: cellular potency improvement of a selective 2-(acylamino)pyridine series. RSC Medicinal Chemistry, 2021, 12, 129-136.	3.9	3
10	The Kinase Chemogenomic Set (KCGS): An Open Science Resource for Kinase Vulnerability Identification. International Journal of Molecular Sciences, 2021, 22, 566.	4.1	62
11	Development of a potent and selective chemical probe for the pleiotropic kinase CK2. Cell Chemical Biology, 2021, 28, 546-558.e10.	5.2	62
12	Crowdsourced mapping of unexplored target space of kinase inhibitors. Nature Communications, 2021, 12, 3307.	12.8	41
13	NEK5 activity regulates the mesenchymal and migratory phenotype in breast cancer cells. Breast Cancer Research and Treatment, 2021, 189, 49-61.	2.5	10
14	Hinge Binder Scaffold Hopping Identifies Potent Calcium/Calmodulin-Dependent Protein Kinase Kinase 2 (CAMKK2) Inhibitor Chemotypes. Journal of Medicinal Chemistry, 2021, 64, 10849-10877.	6.4	22
15	Targeting Never-In-Mitosis-A Related Kinase 5 in Cancer: A Review. Current Medicinal Chemistry, 2021, 28, 6096-6109.	2.4	5
16	Design and Analysis of the 4â€Anilinoquin(az)oline Kinase Inhibition Profiles of GAK/SLK/STK10 Using Quantitative Structureâ€Activity Relationships. ChemMedChem, 2020, 15, 26-49.	3.2	18
17	SGC-AAK1-1: A Chemical Probe Targeting AAK1 and BMP2K. ACS Medicinal Chemistry Letters, 2020, 11, 340-345.	2.8	35
18	A Chemical Probe for Dark Kinase STK17B Derives Its Potency and High Selectivity through a Unique P-Loop Conformation. Journal of Medicinal Chemistry, 2020, 63, 14626-14646.	6.4	17

#	Article	IF	CITATIONS
19	A novel screening approach comparing kinase activity of small molecule inhibitors with similar molecular structures and distinct biologic effects in triple-negative breast cancer to identify targetable signaling pathways. Anti-Cancer Drugs, 2020, 31, 759-775.	1.4	0
20	PKIS deep dive yields a chemical starting point for dark kinases and a cell active BRSK2 inhibitor. Scientific Reports, 2020, 10, 15826.	3.3	6
21	Targeting the Water Network in Cyclin Gâ€Associated Kinase (GAK) with 4â€Anilinoâ€quin(az)oline Inhibitors. ChemMedChem, 2020, 15, 1200-1215.	3.2	9
22	Quantifying CDK inhibitor selectivity in live cells. Nature Communications, 2020, 11, 2743.	12.8	64
23	Defining the Neural Kinome: Strategies and Opportunities for Small Molecule Drug Discovery to Target Neurodegenerative Diseases. ACS Chemical Neuroscience, 2020, 11, 1871-1886.	3 . 5	27
24	New Insights into 4-Anilinoquinazolines as Inhibitors of Cardiac Troponin l–Interacting Kinase (TNNi3K). Molecules, 2020, 25, 1697.	3.8	7
25	In Depth Analysis of Kinase Cross Screening Data to Identify CAMKK2 Inhibitory Scaffolds. Molecules, 2020, 25, 325.	3.8	22
26	Fragment-based discovery of a chemical probe for the PWWP1 domain of NSD3. Nature Chemical Biology, 2019, 15, 822-829.	8.0	59
27	Binding and structural analyses of potent inhibitors of the human Ca2+/calmodulin dependent protein kinase kinase 2 (CAMKK2) identified from a collection of commercially-available kinase inhibitors. Scientific Reports, 2019, 9, 16452.	3 . 3	16
28	E2F1 proteolysis via <scp>SCF</scp> yclin F underlies synthetic lethality between cyclin F loss and Chk1 inhibition. EMBO Journal, 2019, 38, e101443.	7.8	40
29	A Perspective on Extreme Open Science: Companies Sharing Compounds without Restriction. SLAS Discovery, 2019, 24, 505-514.	2.7	13
30	Design of a Cyclin G Associated Kinase (GAK)/Epidermal Growth Factor Receptor (EGFR) Inhibitor Set to Interrogate the Relationship of EGFR and GAK in Chordoma. Journal of Medicinal Chemistry, 2019, 62, 4772-4778.	6.4	34
31	SGC-GAK-1: A Chemical Probe for Cyclin G Associated Kinase (GAK). Journal of Medicinal Chemistry, 2019, 62, 2830-2836.	6.4	56
32	Towards the Development of an In vivo Chemical Probe for Cyclin G Associated Kinase (GAK). Molecules, 2019, 24, 4016.	3.8	16
33	WNT Activates the AAK1 Kinase to Promote Clathrin-Mediated Endocytosis of LRP6 and Establish a Negative Feedback Loop. Cell Reports, 2019, 26, 79-93.e8.	6.4	68
34	Identification and Optimization of 4â€Anilinoquinolines as Inhibitors of Cyclinâ€G Associated Kinase. ChemMedChem, 2018, 13, 48-66.	3.2	51
35	In depth analysis of kinase cross screening data to identify chemical starting points for inhibition of the Nek family of kinases. MedChemComm, 2018, 9, 44-66.	3.4	17
36	Covalent inhibitors of EGFR family protein kinases induce degradation of human Tribbles 2 (TRIB2) pseudokinase in cancer cells. Science Signaling, 2018, 11, .	3.6	66

3

#	Article	IF	CITATIONS
37	Application of Integrated Drug Screening/Kinome Analysis to Identify Inhibitors of Gemcitabine-Resistant Pancreatic Cancer Cell Growth. SLAS Discovery, 2018, 23, 850-861.	2.7	11
38	Donated chemical probes for open science. ELife, 2018, 7, .	6.0	80
39	New tools for evaluating protein tyrosine sulfation: tyrosylprotein sulfotransferases (TPSTs) are novel targets for RAF protein kinase inhibitors. Biochemical Journal, 2018, 475, 2435-2455.	3.7	33
40	Quantitative, Wide-Spectrum Kinase Profiling in Live Cells for Assessing the Effect of Cellular ATP on Target Engagement. Cell Chemical Biology, 2018, 25, 206-214.e11.	5 . 2	197
41	Structural characterization of human Vaccinia-Related Kinases (VRK) bound to small-molecule inhibitors identifies different P-loop conformations. Scientific Reports, 2017, 7, 7501.	3.3	21
42	Progress towards a public chemogenomic set for protein kinases and a call for contributions. PLoS ONE, 2017, 12, e0181585.	2.5	131
43	Novel application of the published kinase inhibitor set to identify therapeutic targets and pathways in triple negative breast cancer subtypes. PLoS ONE, 2017, 12, e0177802.	2.5	6
44	A Transcription-uncoupled Negative Feedback Loop for the 1 WNT Pathway: WNT Activates the AAK1 Kinase to Promote Clathrin-mediated Endocytosis of LRP6. SSRN Electronic Journal, 0, , .	0.4	0