Yong Hua

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9478944/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	A low-cost spiro[fluorene-9,9′-xanthene]-based hole transport material for highly efficient solid-state dye-sensitized solar cells and perovskite solar cells. Energy and Environmental Science, 2016, 9, 873-877.	15.6	362
2	Tailor-Making Low-Cost Spiro[fluorene-9,9′-xanthene]-Based 3D Oligomers for Perovskite Solar Cells. CheM, 2017, 2, 676-687.	5.8	222
3	Progress of the key materials for organic solar cells. Science China Chemistry, 2020, 63, 758-765.	4.2	158
4	Charge-transport layer engineering in perovskite solar cells. Science Bulletin, 2020, 65, 1237-1241.	4.3	115
5	Facile synthesis of fluorene-based hole transport materials for highly efficient perovskite solar cells and solid-state dye-sensitized solar cells. Nano Energy, 2016, 26, 108-113.	8.2	103
6	D–A–D-Typed Hole Transport Materials for Efficient Perovskite Solar Cells: Tuning Photovoltaic Properties via the Acceptor Group. ACS Applied Materials & Interfaces, 2018, 10, 19697-19703.	4.0	101
7	Study of Arylamine-Substituted Porphyrins as Hole-Transporting Materials in High-Performance Perovskite Solar Cells. ACS Applied Materials & Interfaces, 2017, 9, 13231-13239.	4.0	97
8	High conductivity Ag-based metal organic complexes as dopant-free hole-transport materials for perovskite solar cells with high fill factors. Chemical Science, 2016, 7, 2633-2638.	3.7	89
9	Cyclopenta[<i>hi</i>]aceanthrylene-based dopant-free hole-transport material for organic–inorganic hybrid and all-inorganic perovskite solar cells. Journal of Materials Chemistry A, 2019, 7, 5221-5226.	5.2	88
10	The Role of 3D Molecular Structural Control in New Hole Transport Materials Outperforming <i>Spiro</i> â€OMeTAD in Perovskite Solar Cells. Advanced Energy Materials, 2016, 6, 1601062.	10.2	87
11	A two-terminal all-inorganic perovskite/organic tandem solar cell. Science Bulletin, 2019, 64, 885-887.	4.3	76
12	Incorporation of Counter Ions in Organic Molecules: New Strategy in Developing Dopantâ€Free Hole Transport Materials for Efficient Mixedâ€ion Perovskite Solar Cells. Advanced Energy Materials, 2017, 7, 1602736.	10.2	72
13	Interfacial Defect Passivation and Charge Carrier Management for Efficient Perovskite Solar Cells via a Highly Crystalline Small Molecule. ACS Energy Letters, 2021, 6, 4209-4219.	8.8	63
14	Understanding the Effects of Fluorine Substitution in Lithium Salt on Photovoltaic Properties and Stability of Perovskite Solar Cells. ACS Energy Letters, 2021, 6, 2218-2228.	8.8	51
15	Importance of terminated groups in 9,9-bis(4-methoxyphenyl)-substituted fluorene-based hole transport materials for highly efficient organic–inorganic hybrid and all-inorganic perovskite solar cells. Journal of Materials Chemistry A, 2019, 7, 10319-10324.	5.2	38
16	Enhancing the Hot Carrier Injection of Perovskite Solar Cells by Incorporating a Molecular Dipole Interlayer. Advanced Functional Materials, 2022, 32, .	7.8	38
17	Developing D–π–D hole-transport materials for perovskite solar cells: the effect of the π-bridge on device performance. Materials Chemistry Frontiers, 2021, 5, 876-884.	3.2	33
18	Bis[di(4-methoxyphenyl)amino]carbazole-capped indacenodithiophenes as hole transport materials for highly efficient perovskite solar cells: the pronounced positioning effect of a donor group on the cell performance. Journal of Materials Chemistry A, 2019, 7, 10200-10205.	5.2	30

Yong Hua

#	Article	IF	CITATIONS
19	The triple π-bridge strategy for tailoring indeno[2,1- <i>b</i>]carbazole-based HTMs enables perovskite solar cells with efficiency exceeding 21%. Journal of Materials Chemistry A, 2021, 9, 8598-8606.	5.2	24
20	Enhanced electron transfer dynamics in perylene diimide passivated efficient and stable perovskite solar cells. EcoMat, 2021, 3, e12146.	6.8	24
21	Composite Holeâ€Transport Materials Based on a Metalâ€Organic Copper Complex and Spiroâ€OMeTAD for Efficient Perovskite Solar Cells. Solar Rrl, 2018, 2, 1700073.	3.1	23
22	A multifunctional additive of scandium trifluoromethanesulfonate to achieve efficient inverted perovskite solar cells with a high fill factor of 83.80%. Journal of Materials Chemistry A, 2020, 8, 19555-19560.	5.2	23
23	Hole transport materials based on a twisted molecular structure with a single aromatic heterocyclic core to boost the performance of conventional perovskite solar cells. Journal of Materials Chemistry C, 2020, 8, 13415-13421.	2.7	23
24	Investigation of Triphenylamine (TPA)-Based Metal Complexes and Their Application in Perovskite Solar Cells. ACS Omega, 2017, 2, 9231-9240.	1.6	19
25	CsPbI _{2.69} Br _{0.31} solar cells from low-temperature fabrication. Materials Chemistry Frontiers, 2019, 3, 1139-1142.	3.2	19
26	Hydrophobic π-conjugated organic small molecule as a multi-functional interface material enables efficient and stable perovskite solar cells. Chemical Engineering Journal, 2022, 430, 133065.	6.6	15
27	Hole transporting layer engineering via a zwitterionic polysquaraine toward efficient inverted perovskite solar cells. Chemical Engineering Journal, 2022, 445, 136760.	6.6	15
28	Efficient perovskite solar cells enabled by large dimensional structured hole transporting materials. Journal of Materials Chemistry A, 2021, 9, 1663-1668.	5.2	14
29	Highly stable perovskite solar cells with a novel Ni-based metal organic complex as dopant-free hole-transporting material. Journal of Energy Chemistry, 2022, 65, 312-318.	7.1	11
30	Unravel the Chargeâ€Carrier Dynamics in Simple Dimethyl Oxalateâ€Treated Perovskite Solar Cells with Efficiency Exceeding 22%. Energy and Environmental Materials, 2023, 6, .	7.3	7
31	A Wide-Band Gap Copolymer Donor for Efficient Fullerene-Free Solar Cells. ACS Omega, 2019, 4, 14800-14804.	1.6	4
32	Efficient wide-bandgap copolymer donors with reduced synthesis cost. Journal of Materials Chemistry C, 2021, 9, 16187-16191.	2.7	4
33	Rational design of D–π–D hole-transporting materials for efficient perovskite solar cells. Materials Chemistry Frontiers, 2021, 5, 7824-7832.	3.2	3