Piedong Yang

List of Publications by Citations

Source: https://exaly.com/author-pdf/9478888/piedong-yang-publications-by-citations.pdf

Version: 2024-04-09

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

263 papers 85,377 citations

131 h-index 276 g-index

276 ext. papers

93,463 ext. citations

16 avg, IF

8.33 L-index

#	Paper	IF	Citations
263	Room-temperature ultraviolet nanowire nanolasers. <i>Science</i> , 2001 , 292, 1897-9	33.3	7931
262	Nanowire dye-sensitized solar cells. <i>Nature Materials</i> , 2005 , 4, 455-9	27	4919
261	Enhanced thermoelectric performance of rough silicon nanowires. <i>Nature</i> , 2008 , 451, 163-7	50.4	3293
260	Shape Control of Colloidal Metal Nanocrystals. <i>Small</i> , 2008 , 4, 310-325	11	2019
259	Highly crystalline multimetallic nanoframes with three-dimensional electrocatalytic surfaces. <i>Science</i> , 2014 , 343, 1339-43	33.3	1989
258	Light trapping in silicon nanowire solar cells. <i>Nano Letters</i> , 2010 , 10, 1082-7	11.5	1783
257	Covalent organic frameworks comprising cobalt porphyrins for catalytic COI eduction in water. <i>Science</i> , 2015 , 349, 1208-13	33.3	1540
256	Low-temperature wafer-scale production of ZnO nanowire arrays. <i>Angewandte Chemie - International Edition</i> , 2003 , 42, 3031-4	16.4	1486
255	Nanowire photonics. <i>Nature Photonics</i> , 2009 , 3, 569-576	33.9	1379
254	Thermal conductivity of individual silicon nanowires. <i>Applied Physics Letters</i> , 2003 , 83, 2934-2936	3.4	1342
253	General route to vertical ZnO nanowire arrays using textured ZnO seeds. <i>Nano Letters</i> , 2005 , 5, 1231-6	11.5	1280
252	Thermally stable Pt/mesoporous silica core-shell nanocatalysts for high-temperature reactions. <i>Nature Materials</i> , 2009 , 8, 126-31	27	1256
251	Semiconductor nanowires for energy conversion. <i>Chemical Reviews</i> , 2010 , 110, 527-46	68.1	1220
250	SEMICONDUCTOR NANOWIRES AND NANOTUBES. <i>Annual Review of Materials Research</i> , 2004 , 34, 83-1	22 2.8	1210
249	Langmuir B lodgett Silver Nanowire Monolayers for Molecular Sensing Using Surface-Enhanced Raman Spectroscopy. <i>Nano Letters</i> , 2003 , 3, 1229-1233	11.5	1167
248	Shaping binary metal nanocrystals through epitaxial seeded growth. <i>Nature Materials</i> , 2007 , 6, 692-7	27	1073
247	Single gallium nitride nanowire lasers. <i>Nature Materials</i> , 2002 , 1, 106-10	27	1036

(2006-2015)

246	Atomically thin two-dimensional organic-inorganic hybrid perovskites. <i>Science</i> , 2015 , 349, 1518-21	33.3	959
245	Direct Observation of VaporliquidBolid Nanowire Growth. <i>Journal of the American Chemical Society</i> , 2001 , 123, 3165-3166	16.4	874
244	Synergistic geometric and electronic effects for electrochemical reduction of carbon dioxide using gold-copper bimetallic nanoparticles. <i>Nature Communications</i> , 2014 , 5, 4948	17.4	854
243	Block-by-Block Growth of Single-Crystalline Si/SiGe Superlattice Nanowires. <i>Nano Letters</i> , 2002 , 2, 83-8	611.5	853
242	Platonic gold nanocrystals. Angewandte Chemie - International Edition, 2004, 43, 3673-7	16.4	822
241	Highly Luminescent Colloidal Nanoplates of Perovskite Cesium Lead Halide and Their Oriented Assemblies. <i>Journal of the American Chemical Society</i> , 2015 , 137, 16008-11	16.4	820
240	Nanoribbon waveguides for subwavelength photonics integration. <i>Science</i> , 2004 , 305, 1269-73	33.3	803
239	Metal-organic frameworks for electrocatalytic reduction of carbon dioxide. <i>Journal of the American Chemical Society</i> , 2015 , 137, 14129-35	16.4	768
238	Platinum nanoparticle shape effects on benzene hydrogenation selectivity. <i>Nano Letters</i> , 2007 , 7, 3097	-1:0:15	747
237	Solution-Phase Synthesis of Cesium Lead Halide Perovskite Nanowires. <i>Journal of the American Chemical Society</i> , 2015 , 137, 9230-3	16.4	727
236	Photochemical sensing of NO(2) with SnO(2) nanoribbon nanosensors at room temperature. <i>Angewandte Chemie - International Edition</i> , 2002 , 41, 2405-8	16.4	716
235	Silicon Vertically Integrated Nanowire Field Effect Transistors. <i>Nano Letters</i> , 2006 , 6, 973-977	11.5	663
234	25th anniversary article: semiconductor nanowiressynthesis, characterization, and applications. <i>Advanced Materials</i> , 2014 , 26, 2137-84	24	649
233	Semiconductor nanowire: what's next?. <i>Nano Letters</i> , 2010 , 10, 1529-36	11.5	643
232	Polyhedral silver nanocrystals with distinct scattering signatures. <i>Angewandte Chemie - International Edition</i> , 2006 , 45, 4597-601	16.4	639
231	Solution-grown zinc oxide nanowires. <i>Inorganic Chemistry</i> , 2006 , 45, 7535-43	5.1	591
230	Simultaneously efficient light absorption and charge separation in WO3/BiVO4 core/shell nanowire photoanode for photoelectrochemical water oxidation. <i>Nano Letters</i> , 2014 , 14, 1099-105	11.5	580
229	Morphological control of catalytically active platinum nanocrystals. <i>Angewandte Chemie - International Edition</i> , 2006 , 45, 7824-8	16.4	572

228	Giant piezoresistance effect in silicon nanowires. <i>Nature Nanotechnology</i> , 2006 , 1, 42-6	28.7	562
227	Lasing in robust cesium lead halide perovskite nanowires. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2016 , 113, 1993-8	11.5	551
226	Self-photosensitization of nonphotosynthetic bacteria for solar-to-chemical production. <i>Science</i> , 2016 , 351, 74-7	33.3	542
225	Anisotropic etching of silver nanoparticles for plasmonic structures capable of single-particle SERS. Journal of the American Chemical Society, 2010 , 132, 268-74	16.4	537
224	Tunable plasmonic lattices of silver nanocrystals. <i>Nature Nanotechnology</i> , 2007 , 2, 435-40	28.7	534
223	Dendritic nanowire ultraviolet laser array. <i>Journal of the American Chemical Society</i> , 2003 , 125, 4728-9	16.4	533
222	Langmuir-Blodgett nanorod assembly. Journal of the American Chemical Society, 2001, 123, 4360-1	16.4	531
221	ZnO nanowire transistors. <i>Journal of Physical Chemistry B</i> , 2005 , 109, 9-14	3.4	527
220	Complete composition tunability of InGaN nanowires using a combinatorial approach. <i>Nature Materials</i> , 2007 , 6, 951-6	27	525
219	High density n-Si/n-TiO2 core/shell nanowire arrays with enhanced photoactivity. <i>Nano Letters</i> , 2009 , 9, 410-5	11.5	512
218	Sub-two nanometer single crystal Au nanowires. <i>Nano Letters</i> , 2008 , 8, 2041-4	11.5	497
217	Catalyst electro-redeposition controls morphology and oxidation state for selective carbon dioxide reduction. <i>Nature Catalysis</i> , 2018 , 1, 103-110	36.5	479
216	Pt nanocrystals: shape control and Langmuir-Blodgett monolayer formation. <i>Journal of Physical Chemistry B</i> , 2005 , 109, 188-93	3.4	478
215	Self-assembly of uniform polyhedral silver nanocrystals into densest packings and exotic superlattices. <i>Nature Materials</i> , 2011 , 11, 131-7	27	464
214	Electrodeposited cobalt-sulfide catalyst for electrochemical and photoelectrochemical hydrogen generation from water. <i>Journal of the American Chemical Society</i> , 2013 , 135, 17699-702	16.4	463
213	Solution-processed core-shell nanowires for efficient photovoltaic cells. <i>Nature Nanotechnology</i> , 2011 , 6, 568-72	28.7	456
212	A fully integrated nanosystem of semiconductor nanowires for direct solar water splitting. <i>Nano Letters</i> , 2013 , 13, 2989-92	11.5	453
211	Interfacing silicon nanowires with mammalian cells. <i>Journal of the American Chemical Society</i> , 2007 , 129, 7228-9	16.4	453

(2017-2006)

210	nanoparticles: synthesis, characterization, and catalytic properties. <i>Journal of the American Chemical Society</i> , 2006 , 128, 3027-37	16.4	453
209	Tunable nanowire nonlinear optical probe. <i>Nature</i> , 2007 , 447, 1098-101	50.4	448
208	Bismuth nanotubes: a rational low-temperature synthetic route. <i>Journal of the American Chemical Society</i> , 2001 , 123, 9904-5	16.4	445
207	Artificial photosynthesis for sustainable fuel and chemical production. <i>Angewandte Chemie - International Edition</i> , 2015 , 54, 3259-66	16.4	444
206	Designing materials for electrochemical carbon dioxide recycling. <i>Nature Catalysis</i> , 2019 , 2, 648-658	36.5	442
205	Sub-10 nm platinum nanocrystals with size and shape control: catalytic study for ethylene and pyrrole hydrogenation. <i>Journal of the American Chemical Society</i> , 2009 , 131, 5816-22	16.4	440
204	Thermochromic halide perovskite solar cells. <i>Nature Materials</i> , 2018 , 17, 261-267	27	436
203	Crystallographic alignment of high-density gallium nitride nanowire arrays. <i>Nature Materials</i> , 2004 , 3, 524-8	27	412
202	Plasmon-Enhanced Photocatalytic CO(2) Conversion within Metal-Organic Frameworks under Visible Light. <i>Journal of the American Chemical Society</i> , 2017 , 139, 356-362	16.4	401
201	Nanocrystal bilayer for tandem catalysis. <i>Nature Chemistry</i> , 2011 , 3, 372-6	17.6	398
200	Langmuir-Blodgettry of nanocrystals and nanowires. <i>Accounts of Chemical Research</i> , 2008 , 41, 1662-73	24.3	393
199	Electrochemical Activation of CO through Atomic Ordering Transformations of AuCu Nanoparticles. Journal of the American Chemical Society, 2017 , 139, 8329-8336	16.4	392
198	Single Nanowire Lasers. <i>Journal of Physical Chemistry B</i> , 2001 , 105, 11387-11390	3.4	388
197	Nanowire photonics. <i>Materials Today</i> , 2006 , 9, 36-45	21.8	376
196	Oligo- and polythiophene/ZnO hybrid nanowire solar cells. <i>Nano Letters</i> , 2010 , 10, 334-40	11.5	370
195	Photoelectrochemical properties of TiO2 nanowire arrays: a study of the dependence on length and atomic layer deposition coating. <i>ACS Nano</i> , 2012 , 6, 5060-9	16.7	353
194	Metalorganic Chemical Vapor Deposition Route to GaN Nanowires with Triangular Cross Sections. <i>Nano Letters</i> , 2003 , 3, 1063-1066	11.5	341
193	Copper nanoparticle ensembles for selective electroreduction of CO to C-C products. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2017 , 114, 10560-10565	11.5	331

192	Very High Frequency Silicon Nanowire Electromechanical Resonators. <i>Nano Letters</i> , 2007 , 7, 1953-1959	11.5	328
191	Synthesis of Composition Tunable and Highly Luminescent Cesium Lead Halide Nanowires through Anion-Exchange Reactions. <i>Journal of the American Chemical Society</i> , 2016 , 138, 7236-9	16.4	327
190	Optical trapping and integration of semiconductor nanowire assemblies in water. <i>Nature Materials</i> , 2006 , 5, 97-101	27	323
189	Nanowire-based all-oxide solar cells. <i>Journal of the American Chemical Society</i> , 2009 , 131, 3756-61	16.4	321
188	Thermal conductivity of Si/SiGe superlattice nanowires. <i>Applied Physics Letters</i> , 2003 , 83, 3186-3188	3.4	317
187	Ligand Mediated Transformation of Cesium Lead Bromide Perovskite Nanocrystals to Lead Depleted CsPbBr Nanocrystals. <i>Journal of the American Chemical Society</i> , 2017 , 139, 5309-5312	16.4	301
186	Growth and Anion Exchange Conversion of CH3NH3PbX3 Nanorod Arrays for Light-Emitting Diodes. <i>Nano Letters</i> , 2015 , 15, 5519-24	11.5	296
185	Large-scale synthesis of transition-metal-doped TiO2 nanowires with controllable overpotential. Journal of the American Chemical Society, 2013 , 135, 9995-8	16.4	289
184	Thermal conductance of thin silicon nanowires. <i>Physical Review Letters</i> , 2008 , 101, 105501	7.4	289
183	Encapsulation of Perovskite Nanocrystals into Macroscale Polymer Matrices: Enhanced Stability and Polarization. <i>ACS Applied Materials & Dolarization (Materials & Dolarizatio</i>	9.5	288
182	Room-temperature formation of hollow Cu(2)O nanoparticles. Advanced Materials, 2010, 22, 1910-4	24	278
181	Semiconductor Nanowires for Artificial Photosynthesis. <i>Chemistry of Materials</i> , 2014 , 26, 415-422	9.6	277
180	Structure-Sensitive CO Electroreduction to Hydrocarbons on Ultrathin 5-fold Twinned Copper Nanowires. <i>Nano Letters</i> , 2017 , 17, 1312-1317	11.5	272
179	A Molecular Surface Functionalization Approach to Tuning Nanoparticle Electrocatalysts for Carbon Dioxide Reduction. <i>Journal of the American Chemical Society</i> , 2016 , 138, 8120-5	16.4	272
178	Nanowire-bacteria hybrids for unassisted solar carbon dioxide fixation to value-added chemicals. <i>Nano Letters</i> , 2015 , 15, 3634-9	11.5	269
177	Sulfur-Modulated Tin Sites Enable Highly Selective Electrochemical Reduction of CO2 to Formate. <i>Joule</i> , 2017 , 1, 794-805	27.8	263
176	Semiconductor nanowire lasers. <i>Nature Reviews Materials</i> , 2016 , 1,	73.3	260
175	Self-Organized GaN Quantum Wire UV Lasers. <i>Journal of Physical Chemistry B</i> , 2003 , 107, 8721-8725	3.4	254

174	Nanowire-based single-cell endoscopy. <i>Nature Nanotechnology</i> , 2011 , 7, 191-6	28.7	248	
173	Surface and Interface Control in Nanoparticle Catalysis. <i>Chemical Reviews</i> , 2020 , 120, 1184-1249	68.1	245	
172	Quantifying surface roughness effects on phonon transport in silicon nanowires. <i>Nano Letters</i> , 2012 , 12, 2475-82	11.5	244	
171	Dendrimer templated synthesis of one nanometer Rh and Pt particles supported on mesoporous silica: catalytic activity for ethylene and pyrrole hydrogenation. <i>Nano Letters</i> , 2008 , 8, 2027-34	11.5	241	
170	Atomic layer deposition of platinum catalysts on nanowire surfaces for photoelectrochemical water reduction. <i>Journal of the American Chemical Society</i> , 2013 , 135, 12932-5	16.4	240	
169	Energy and environment policy case for a global project on artificial photosynthesis. <i>Energy and Environmental Science</i> , 2013 , 6, 695	35.4	236	
168	Towards systems materials engineering. <i>Nature Materials</i> , 2012 , 11, 560-3	27	232	
167	Surface-enhanced Raman spectroscopy for trace arsenic detection in contaminated water. <i>Angewandte Chemie - International Edition</i> , 2008 , 47, 6456-60	16.4	222	
166	State of the Art and Prospects for Halide Perovskite Nanocrystals. ACS Nano, 2021, 15, 10775-10981	16.7	222	
165	TiO2/BiVO4 Nanowire Heterostructure Photoanodes Based on Type II Band Alignment. <i>ACS Central Science</i> , 2016 , 2, 80-8	16.8	221	
164	Bacteria photosensitized by intracellular gold nanoclusters for solar fuel production. <i>Nature Nanotechnology</i> , 2018 , 13, 900-905	28.7	217	
163	Highly selective synthesis of catalytically active monodisperse rhodium nanocubes. <i>Journal of the American Chemical Society</i> , 2008 , 130, 5868-9	16.4	214	
162	Anisotropic phase segregation and migration of Pt in nanocrystals en route to nanoframe catalysts. <i>Nature Materials</i> , 2016 , 15, 1188-1194	27	205	
161	Optical routing and sensing with nanowire assemblies. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2005 , 102, 7800-5	11.5	201	
160	Interfacing nature's catalytic machinery with synthetic materials for semi-artificial photosynthesis. <i>Nature Nanotechnology</i> , 2018 , 13, 890-899	28.7	197	
159	The Chemistry and Physics of Semiconductor Nanowires. MRS Bulletin, 2005, 30, 85-91	3.2	196	
158	Bandgap engineering in semiconductor alloy nanomaterials with widely tunable compositions. <i>Nature Reviews Materials</i> , 2017 , 2,	73.3	195	
157	Si/InGaN core/shell hierarchical nanowire arrays and their photoelectrochemical properties. <i>Nano Letters</i> , 2012 , 12, 1678-82	11.5	195	

156	Ultrathin Colloidal Cesium Lead Halide Perovskite Nanowires. <i>Journal of the American Chemical Society</i> , 2016 , 138, 13155-13158	16.4	193
155	Transition-metal doped zinc oxide nanowires. <i>Angewandte Chemie - International Edition</i> , 2006 , 45, 420	-316.4	189
154	Self-transducing silicon nanowire electromechanical systems at room temperature. <i>Nano Letters</i> , 2008 , 8, 1756-61	11.5	187
153	Shape, size, and assembly control of PbTe nanocrystals. <i>Journal of the American Chemical Society</i> , 2007 , 129, 9864-5	16.4	186
152	The Making and Breaking of Lead-Free Double Perovskite Nanocrystals of Cesium Silver-Bismuth Halide Compositions. <i>Nano Letters</i> , 2018 , 18, 3502-3508	11.5	184
151	Tunable Cu Enrichment Enables Designer Syngas Electrosynthesis from CO. <i>Journal of the American Chemical Society</i> , 2017 , 139, 9359-9363	16.4	183
150	Platonic Gold Nanocrystals. <i>Angewandte Chemie</i> , 2004 , 116, 3759-3763	3.6	183
149	Electron delocalization and charge mobility as a function of reduction in a metal-organic framework. <i>Nature Materials</i> , 2018 , 17, 625-632	27	182
148	Hybrid bioinorganic approach to solar-to-chemical conversion. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2015 , 112, 11461-6	11.5	174
147	Vertical nanowire array-based light emitting diodes. <i>Nano Research</i> , 2008 , 1, 123-128	10	172
146	Self-organized silver nanoparticles for three-dimensional plasmonic crystals. <i>Nano Letters</i> , 2008 , 8, 403	3-18 1.5	168
145	Atomic Structure of Pt3Ni Nanoframe Electrocatalysts by in Situ X-ray Absorption Spectroscopy. Journal of the American Chemical Society, 2015 , 137, 15817-24	16.4	163
144	Semiconductor nanowire ring resonator laser. <i>Physical Review Letters</i> , 2006 , 96, 143903	7.4	163
143	Ultralow thermal conductivity in all-inorganic halide perovskites. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2017 , 114, 8693-8697	11.5	156
142	Nanofluidic diodes based on nanotube heterojunctions. <i>Nano Letters</i> , 2009 , 9, 3820-5	11.5	153
141	Synthesis of Ultrathin Copper Nanowires Using Tris(trimethylsilyl)silane for High-Performance and Low-Haze Transparent Conductors. <i>Nano Letters</i> , 2015 , 15, 7610-5	11.5	145
140	Dopant profiling and surface analysis of silicon nanowires using capacitance-voltage measurements. <i>Nature Nanotechnology</i> , 2009 , 4, 311-4	28.7	145

(2013-2009)

138	Direct photonic-plasmonic coupling and routing in single nanowires. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2009 , 106, 21045-50	11.5	142
137	One-step patterning of aligned nanowire arrays by programmed dip coating. <i>Angewandte Chemie - International Edition</i> , 2007 , 46, 2414-7	16.4	142
136	Surfactant-free, large-scale, solution-liquid-solid growth of gallium phosphide nanowires and their use for visible-light-driven hydrogen production from water reduction. <i>Journal of the American Chemical Society</i> , 2011 , 133, 19306-9	16.4	141
135	Control of Architecture in Rhombic Dodecahedral Pt-Ni Nanoframe Electrocatalysts. <i>Journal of the American Chemical Society</i> , 2017 , 139, 11678-11681	16.4	140
134	Spatially resolved multicolor CsPbX nanowire heterojunctions via anion exchange. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2017 , 114, 7216-7221	11.5	134
133	Electrical characteristics and chemical stability of non-oxidized, methyl-terminated silicon nanowires. <i>Journal of the American Chemical Society</i> , 2006 , 128, 8990-1	16.4	134
132	Solution-Processed Copper/Reduced-Graphene-Oxide Core/Shell Nanowire Transparent Conductors. <i>ACS Nano</i> , 2016 , 10, 2600-6	16.7	128
131	One-step Polyol Synthesis and Langmuir B lodgett Monolayer Formation of Size-tunable Monodisperse Rhodium Nanocrystals with Catalytically Active (111) Surface Structures. <i>Journal of Physical Chemistry C</i> , 2007 , 111, 12243-12253	3.8	128
130	Tandem Catalysis for CO Hydrogenation to C-C Hydrocarbons. <i>Nano Letters</i> , 2017 , 17, 3798-3802	11.5	124
129	Mesoscopic constructs of ordered and oriented metal-organic frameworks on plasmonic silver nanocrystals. <i>Journal of the American Chemical Society</i> , 2015 , 137, 2199-202	16.4	120
128	Low-Temperature Wafer-Scale Production of ZnO Nanowire Arrays. <i>Angewandte Chemie</i> , 2003 , 115, 313	9.8 14	2118
127	Polarity switching and transient responses in single nanotube nanofluidic transistors. <i>Physical Review Letters</i> , 2005 , 95, 086607	7.4	113
126	Polyhedral Silver Nanocrystals with Distinct Scattering Signatures. <i>Angewandte Chemie</i> , 2006 , 118, 4713	3 48717	109
125	Oriented assembly of polyhedral plasmonic nanoparticle clusters. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2013 , 110, 6640-5	11.5	108
124	Intrinsic anion diffusivity in lead halide perovskites is facilitated by a soft lattice. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2018 , 115, 11929-11934	11.5	108
123	Synthesis of metal sulfide nanomaterials via thermal decomposition of single-source precursors. Journal of Materials Chemistry, 2010 , 20, 6612		107
122	Directed Assembly of Nanoparticle Catalysts on Nanowire Photoelectrodes for Photoelectrochemical CO2 Reduction. <i>Nano Letters</i> , 2016 , 16, 5675-80	11.5	105
121	Cleaved-coupled nanowire lasers. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2013 , 110, 865-9	11.5	103

120	Investigation of phonon coherence and backscattering using silicon nanomeshes. <i>Nature Communications</i> , 2017 , 8, 14054	17.4	101
119	Structural, optical, and electrical properties of phase-controlled cesium lead iodide nanowires. <i>Nano Research</i> , 2017 , 10, 1107-1114	10	101
118	Cytoprotective metal-organic frameworks for anaerobic bacteria. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2018 , 115, 10582-10587	11.5	100
117	Three-Dimensional Phthalocyanine Metal-Catecholates for High Electrochemical Carbon Dioxide Reduction. <i>Journal of the American Chemical Society</i> , 2019 , 141, 17081-17085	16.4	99
116	Atomic Resolution Imaging of Halide Perovskites. <i>Nano Letters</i> , 2016 , 16, 7530-7535	11.5	97
115	Epitaxial growth of InGaN nanowire arrays for light emitting diodes. ACS Nano, 2011, 5, 3970-6	16.7	97
114	Field-effect modulation of Seebeck coefficient in single PbSe nanowires. <i>Nano Letters</i> , 2009 , 9, 1689-93	11.5	97
113	A nanocube plasmonic sensor for molecular binding on membrane surfaces. <i>Nano Letters</i> , 2009 , 9, 2077	- 82 .5	97
112	Strongly Quantum Confined Colloidal Cesium Tin Iodide Perovskite Nanoplates: Lessons for Reducing Defect Density and Improving Stability. <i>Nano Letters</i> , 2018 , 18, 2060-2066	11.5	96
111	Zn-doped p-type gallium phosphide nanowire photocathodes from a surfactant-free solution synthesis. <i>Nano Letters</i> , 2012 , 12, 5407-11	11.5	96
110	Magnetotransport in Co-doped ZnO nanowires. <i>Nano Letters</i> , 2009 , 9, 892-6	11.5	96
109	Nanowires for Photonics. <i>Chemical Reviews</i> , 2019 , 119, 9153-9169	68.1	95
108	Cu-Ag Tandem Catalysts for High-Rate CO2 Electrolysis toward Multicarbons. <i>Joule</i> , 2020 , 4, 1688-1699	27.8	95
107	Photosynthetic semiconductor biohybrids for solar-driven biocatalysis. <i>Nature Catalysis</i> , 2020 , 3, 245-25	5 36.5	94
106	Nanowire Photoelectrochemistry. <i>Chemical Reviews</i> , 2019 , 119, 9221-9259	68.1	92
105	Core-Shell CdS-CuB Nanorod Array Solar Cells. <i>Nano Letters</i> , 2015 , 15, 4096-101	11.5	91
104	Excited-state vibrational dynamics toward the polaron in methylammonium lead iodide perovskite. <i>Nature Communications</i> , 2018 , 9, 2525	17.4	90
103	Single-nanowire photoelectrochemistry. <i>Nature Nanotechnology</i> , 2016 , 11, 609-12	28.7	88

(2016-2017)

102	Ultrathin Epitaxial Cu@Au Core-Shell Nanowires for Stable Transparent Conductors. <i>Journal of the American Chemical Society</i> , 2017 , 139, 7348-7354	16.4	87	
101	Semiconductor Nanowire Array: Potential Substrates for Photocatalysis and Photovoltaics. <i>Topics in Catalysis</i> , 2002 , 19, 197-202	2.3	87	
100	Cyborgian Material Design for Solar Fuel Production: The Emerging Photosynthetic Biohybrid Systems. <i>Accounts of Chemical Research</i> , 2017 , 50, 476-481	24.3	86	
99	Cysteine-Cystine Photoregeneration for Oxygenic Photosynthesis of Acetic Acid from CO2 by a Tandem Inorganic-Biological Hybrid System. <i>Nano Letters</i> , 2016 , 16, 5883-7	11.5	82	
98	Spectroscopic elucidation of energy transfer in hybrid inorganic-biological organisms for solar-to-chemical production. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2016 , 113, 11750-11755	11.5	81	
97	Rich Chemistry in Inorganic Halide Perovskite Nanostructures. <i>Advanced Materials</i> , 2018 , 30, e1802856	24	81	
96	Physical Biology of the Materials-Microorganism Interface. <i>Journal of the American Chemical Society</i> , 2018 , 140, 1978-1985	16.4	79	
95	Catalytic properties of Pt cluster-decorated CeO2 nanostructures. <i>Nano Research</i> , 2011 , 4, 61-71	10	79	
94	Membrane-protein binding measured with solution-phase plasmonic nanocube sensors. <i>Nature Methods</i> , 2012 , 9, 1189-91	21.6	78	
93	Bacterial recognition of silicon nanowire arrays. <i>Nano Letters</i> , 2013 , 13, 2864-9	11.5	78	
92	Tunable Polaron Distortions Control the Extent of Halide Demixing in Lead Halide Perovskites. Journal of Physical Chemistry Letters, 2018 , 9, 3998-4005	6.4	76	
91	High quantum efficiency of band-edge emission from ZnO nanowires. <i>Nano Letters</i> , 2011 , 11, 3792-6	11.5	75	
90	High-Performance Pt-Co Nanoframes for Fuel-Cell Electrocatalysis. <i>Nano Letters</i> , 2020 , 20, 1974-1979	11.5	72	
89	Ruddlesden-Popper Phase in Two-Dimensional Inorganic Halide Perovskites: A Plausible Model and the Supporting Observations. <i>Nano Letters</i> , 2017 , 17, 5489-5494	11.5	72	
88	MoS2-wrapped silicon nanowires for photoelectrochemical water reduction. <i>Nano Research</i> , 2015 , 8, 281-287	10	70	
87	Synthesis of Silver Nanowires with Reduced Diameters Using Benzoin-Derived Radicals to Make Transparent Conductors with High Transparency and Low Haze. <i>Nano Letters</i> , 2018 , 18, 5329-5334	11.5	69	
86	Thermoelectric properties of p-type PbSe nanowires. <i>Nano Research</i> , 2009 , 2, 394-399	10	67	
85	Insights into the Mechanism of Tandem Alkene Hydroformylation over a Nanostructured Catalyst with Multiple Interfaces. <i>Journal of the American Chemical Society</i> , 2016 , 138, 11568-74	16.4	66	

84	Organic-inorganic perovskites: Lower threshold for nanowire lasers. <i>Nature Materials</i> , 2015 , 14, 557-8	27	65
83	Absorption of light in a single-nanowire silicon solar cell decorated with an octahedral silver nanocrystal. <i>Nano Letters</i> , 2011 , 11, 5189-95	11.5	65
82	Atomic-level control of the thermoelectric properties in polytypoid nanowires. <i>Chemical Science</i> , 2011 , 2, 706	9.4	65
81	Perovskite nanowire-block copolymer composites with digitally programmable polarization anisotropy. <i>Science Advances</i> , 2019 , 5, eaav8141	14.3	64
80	All inorganic semiconductor nanowire mesh for direct solar water splitting. ACS Nano, 2014, 8, 11739-4	416.7	62
79	Probing the local coordination environment for transition metal dopants in zinc oxide nanowires. <i>Nano Letters</i> , 2007 , 7, 905-9	11.5	61
78	Gallium nitride nanowires with a metal initiated metal-organic chemical vapor deposition (MOCVD) approach. <i>Physica Status Solidi (B): Basic Research</i> , 2004 , 241, 2775-2778	1.3	61
77	Growth and Photoelectrochemical Energy Conversion of Wurtzite Indium Phosphide Nanowire Arrays. <i>ACS Nano</i> , 2016 , 10, 5525-35	16.7	61
76	Close-Packed Nanowire-Bacteria Hybrids for Efficient Solar-Driven CO2 Fixation. <i>Joule</i> , 2020 , 4, 800-81	1 27.8	60
75	Effects of Catalyst Processing on the Activity and Stability of Pt-Ni Nanoframe Electrocatalysts. <i>ACS Nano</i> , 2018 , 12, 8697-8705	16.7	59
74	Room-Temperature Coherent Optical Phonon in 2D Electronic Spectra of CHNHPbI Perovskite as a Possible Cooling Bottleneck. <i>Journal of Physical Chemistry Letters</i> , 2017 , 8, 3211-3215	6.4	59
73	Electrochemically scrambled nanocrystals are catalytically active for CO-to-multicarbons. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 9194-9201	11.5	57
72	Introduction: 1D Nanomaterials/Nanowires. <i>Chemical Reviews</i> , 2019 , 119, 8955-8957	68.1	56
71	Lead-free Cesium Europium Halide Perovskite Nanocrystals. <i>Nano Letters</i> , 2020 , 20, 3734-3739	11.5	54
70	Structural and spectral dynamics of single-crystalline Ruddlesden-Popper phase halide perovskite blue light-emitting diodes. <i>Science Advances</i> , 2020 , 6, eaay4045	14.3	53
69	Quantitative imaging of anion exchange kinetics in halide perovskites. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2019 , 116, 12648-12653	11.5	52
68	Light-induced charge transport within a single asymmetric nanowire. <i>Nano Letters</i> , 2011 , 11, 3755-8	11.5	51
67	Surface-Enhanced Raman Spectroscopy for Trace Arsenic Detection in Contaminated Water. <i>Angewandte Chemie</i> , 2008 , 120, 6556-6560	3.6	50

66	Uniform doping of metal oxide nanowires using solid state diffusion. <i>Journal of the American Chemical Society</i> , 2014 , 136, 10521-6	16.4	45
65	Giant Light-Emission Enhancement in Lead Halide Perovskites by Surface Oxygen Passivation. <i>Nano Letters</i> , 2018 , 18, 6967-6973	11.5	45
64	Semiconductor nanowires for photovoltaic and photoelectrochemical energy conversion. <i>Frontiers of Physics</i> , 2014 , 9, 289-302	3.7	44
63	Electrostatics of nanowire transistors with triangular cross sections. <i>Journal of Applied Physics</i> , 2006 , 99, 054310	2.5	44
62	Self-Assembly of Two-Dimensional Perovskite Nanosheet Building Blocks into Ordered Ruddlesden-Popper Perovskite Phase. <i>Journal of the American Chemical Society</i> , 2019 , 141, 13028-13032	<u>1</u> 6.4	42
61	Salt-induced self-assembly of bacteria on nanowire arrays. <i>Nano Letters</i> , 2014 , 14, 5471-6	11.5	42
60	Electrocatalytic Rate Alignment Enhances Syngas Generation. <i>Joule</i> , 2019 , 3, 257-264	27.8	40
59	Critical Role of Methylammonium Librational Motion in Methylammonium Lead Iodide (CHNHPbI) Perovskite Photochemistry. <i>Nano Letters</i> , 2017 , 17, 4151-4157	11.5	39
58	Electrical and Optical Tunability in All-Inorganic Halide Perovskite Alloy Nanowires. <i>Nano Letters</i> , 2018 , 18, 3538-3542	11.5	38
57	Benzoin Radicals as Reducing Agent for Synthesizing Ultrathin Copper Nanowires. <i>Journal of the American Chemical Society</i> , 2017 , 139, 3027-3032	16.4	36
56	Progress in Perovskite Photocatalysis. ACS Energy Letters, 2020, 5, 2602-2604	20.1	36
55	Phase Transitions and Anion Exchange in All-Inorganic Halide Perovskites. <i>Accounts of Materials Research</i> , 2020 , 1, 3-15	7.5	36
54	Synthesis of PtCo3 polyhedral nanoparticles and evolution to Pt3Co nanoframes. <i>Surface Science</i> , 2016 , 648, 328-332	1.8	35
53	Phase-transition-induced p-n junction in single halide perovskite nanowire. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2018 , 115, 8889-8894	11.5	34
52	Roadmap on semiconductor-cell biointerfaces. <i>Physical Biology</i> , 2018 , 15, 031002	3	34
51	Alumina-coated Ag nanocrystal monolayers as surfaceenhanced Raman spectroscopy platforms for the direct spectroscopic detection of water splitting reaction intermediates. <i>Nano Research</i> , 2014 , 7, 132-143	10	33
50	Selective CO2 electrocatalysis at the pseudocapacitive nanoparticle/ordered-ligand interlayer. <i>Nature Energy</i> , 2020 , 5, 1032-1042	62.3	28
49	Copper(I)-Based Highly Emissive All-Inorganic Rare-Earth Halide Clusters. <i>Matter</i> , 2019 , 1, 180-191	12.7	27

48	Characterization of heat transfer along a silicon nanowire using thermoreflectance technique. <i>IEEE Nanotechnology Magazine</i> , 2006 , 5, 67-74	2.6	27
47	Two-Step Patterning of Scalable All-Inorganic Halide Perovskite Arrays. <i>ACS Nano</i> , 2020 , 14, 3500-3508	16.7	25
46	Pressure-induced semiconductor-to-metal phase transition of a charge-ordered indium halide perovskite. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2019 , 116, 23404-23409	11.5	25
45	Ion Write Microthermotics: Programing Thermal Metamaterials at the Microscale. <i>Nano Letters</i> , 2019 , 19, 3830-3837	11.5	24
44	Address the Elkalinity problem@n CO2 electrolysis with catalyst design and translation. <i>Joule</i> , 2021 , 5, 737-742	27.8	24
43	Efficiency enhancement of copper contaminated radial pl junction solar cells. <i>Chemical Physics Letters</i> , 2011 , 501, 153-158	2.5	22
42	One-Step Patterning of Aligned Nanowire Arrays by Programmed Dip Coating. <i>Angewandte Chemie</i> , 2007 , 119, 2466-2469	3.6	22
41	Liquid-like Interfaces Mediate Structural Phase Transitions in Lead Halide Perovskites. <i>Matter</i> , 2020 , 3, 534-545	12.7	21
40	Room-Temperature Dynamics of Vanishing Copper Nanoparticles Supported on Silica. <i>Nano Letters</i> , 2017 , 17, 2732-2737	11.5	18
39	Effect of Anisotropic Confinement on Electronic Structure and Dynamics of Band Edge Excitons in Inorganic Perovskite Nanowires. <i>Journal of Physical Chemistry A</i> , 2020 , 124, 1867-1876	2.8	18
38	Semiconductor nanowire building blocks: From flux line pinning to artificial photosynthesis. <i>MRS Bulletin</i> , 2012 , 37, 806-813	3.2	18
37	Templated synthesis of shape-controlled, ordered TiO2 cage structures. <i>Small</i> , 2011 , 7, 2037-40	11	17
36	Solar-driven carbon dioxide fixation using photosynthetic semiconductor bio-hybrids. <i>Faraday Discussions</i> , 2019 , 215, 54-65	3.6	16
35	Lead halide perovskite nanowires stabilized by block copolymers for Langmuir-Blodgett assembly. <i>Nano Research</i> , 2020 , 13, 1453-1458	10	16
34	Gold-Nanocluster-Mediated Delivery of siRNA to Intact Plant Cells for Efficient Gene Knockdown. <i>Nano Letters</i> , 2021 , 21, 5859-5866	11.5	16
33	Synthesis and Photocatalytic Properties of Single Crystalline (Ga1-xZnx)(N1-xOx) Nanotubes. <i>Israel Journal of Chemistry</i> , 2012 , 52, 1111-1117	3.4	15
32	Metal-Coated Zinc Oxide Nanocavities. IEEE Journal of Quantum Electronics, 2011, 47, 245-251	2	14
31	Size Transformation of the Au(SG) Nanocluster and Its Surface-Sensitive Kinetics. <i>Journal of the American Chemical Society</i> , 2020 , 142, 11514-11520	16.4	12

(2021-2020)

30	Scaling Laws of Exciton Recombination Kinetics in Low Dimensional Halide Perovskite Nanostructures. <i>Journal of the American Chemical Society</i> , 2020 , 142, 8871-8879	16.4	12
29	Ultrathin Free-Standing Oxide Membranes for Electron and Photon Spectroscopy Studies of Solid-Gas and Solid-Liquid Interfaces. <i>Nano Letters</i> , 2020 , 20, 6364-6371	11.5	11
28	Sulfur-doped graphene anchoring of ultrafine Au25 nanoclusters for electrocatalysis. <i>Nano Research</i> , 2021 , 14, 3509-3513	10	11
27	Preface: Nanowires. <i>Inorganic Chemistry</i> , 2006 , 45, 7509-7510	5.1	10
26	The making of a reconfigurable semiconductor with a soft ionic lattice. <i>Matter</i> , 2021 ,	12.7	9
25	Kinetics of moisture-induced phase transformation in inorganic halide perovskite. <i>Matter</i> , 2021 , 4, 2392	2- 24 . 9 2	9
24	Ferroelectricity in a semiconducting all-inorganic halide perovskite Science Advances, 2022, 8, eabj5887	114.3	8
23	Morphology-controlled transformation of Cu@Au core-shell nanowires into thermally stable Cu3Au intermetallic nanowires. <i>Nano Research</i> , 2020 , 13, 2564-2569	10	7
22	Solid-State Ionic Rectification in Perovskite Nanowire Heterostructures. <i>Nano Letters</i> , 2020 , 20, 8151-87	1 56 .5	6
21	Lattice Dynamics and Optoelectronic Properties of Vacancy-Ordered Double Perovskite Cs2TeX6 (X = Cl[Br[]]]Single Crystals. <i>Journal of Physical Chemistry C</i> , 2021 , 125, 25126-25139	3.8	5
20	Nanoparticle Assembly Induced Ligand Interactions for Enhanced Electrocatalytic CO Conversion. Journal of the American Chemical Society, 2021 , 143, 19919-19927	16.4	5
19	Revealing the Phase Separation Behavior of Thermodynamically Immiscible Elements in a Nanoparticle. <i>Nano Letters</i> , 2021 , 21, 6684-6689	11.5	5
18	Heterostructured Aull Catalysts for Enhanced Oxygen Evolution Reaction1440-1447		5
17	The Interactive Dynamics of Nanocatalyst Structure and Microenvironment during Electrochemical CO Conversion <i>Jacs Au</i> , 2022 , 2, 562-572		5
16	Ligand removal of Au nanoclusters by thermal and electrochemical treatments for selective CO electroreduction to CO. <i>Journal of Chemical Physics</i> , 2021 , 155, 051101	3.9	4
15	Molecular insights and future frontiers in cell photosensitization for solar-driven CO conversion. <i>IScience</i> , 2021 , 24, 102952	6.1	4
14	Individually Encapsulated Frame-in-Frame Structure 2020 , 2, 685-690		3
13	Interface Sensitivity in Electron/Ion Yield X-ray Absorption Spectroscopy: The TiO-HO Interface. <i>Journal of Physical Chemistry Letters</i> , 2021 , 12, 10212-10217	6.4	3

12	Ligand-Free Processable Perovskite Semiconductor Ink. <i>Nano Letters</i> , 2021 , 21, 8856-8862	11.5	3
11	A New Perspective and Design Principle for Halide Perovskites: Ionic Octahedron Network (ION). <i>Nano Letters</i> , 2021 , 21, 5415-5421	11.5	3
10	The presence and role of the intermediary CO reservoir in heterogeneous electroreduction of CO <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2022 , 119, e220192211	9 ^{11.5}	3
9	Photoelectrochemical CO Reduction toward Multicarbon Products with Silicon Nanowire Photocathodes Interfaced with Copper Nanoparticles <i>Journal of the American Chemical Society</i> , 2022 ,	16.4	3
8	Low-Temperature Solution-Phase Growth of Silicon and Silicon-Containing Alloy Nanowires. <i>Journal of Physical Chemistry C</i> , 2016 , 120, 20525-20529	3.8	2
7	Chapter 6:Nanowires for Photovoltaics and Artificial Photosynthesis. <i>RSC Smart Materials</i> , 2014 , 277-31	10.6	2
6	Phase transition dynamics in one-dimensional halide perovskite crystals. MRS Bulletin, 2021, 46, 310-31	63.2	2
5	Laser-accelerated phase transformation in cesium lead iodide perovskite. <i>Matter</i> , 2022 , 5, 1455-1465	12.7	2
4	Photoinduced Charge Transfer and Trapping on Single Gold Metal Nanoparticles on TiO. <i>ACS Applied Materials & Discourse Applied & Discourse Applied Materials & Discourse Applied & Discourse & Disc</i>	9.5	1
3	Production of PHB From CO-Derived Acetate With Minimal Processing Assessed for Space Biomanufacturing. <i>Frontiers in Microbiology</i> , 2021 , 12, 700010	5.7	1
2	Gallium nitride nanowires with a metal initiated metal-organic chemical vapor deposition (MOCVD) approach [phys. stat. sol. (b) 241, 2775 (2004)]. <i>Physica Status Solidi (B): Basic Research</i> , 2005 , 242, 763-7	6 ³ 3	0
1	Phase transition dynamics in one-dimensional halide perovskite crystals. MRS Bulletin,1-7	3.2	O