Elliot M Meyerowitz

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9478599/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Cryo-electron tomography of the onion cell wall shows bimodally oriented cellulose fibers and reticulated homogalacturonan networks. Current Biology, 2022, 32, 2375-2389.e6.	3.9	29
2	Structure of the Bacterial Cellulose Ribbon and Its Assembly-Guiding Cytoskeleton by Electron Cryotomography. Journal of Bacteriology, 2021, 203, .	2.2	31
3	A multiscale analysis of early flower development in Arabidopsis provides an integrated view of molecular regulation and growth control. Developmental Cell, 2021, 56, 540-556.e8.	7.0	37
4	Molecular mechanism of cytokinin-activated cell division in <i>Arabidopsis</i> . Science, 2021, 371, 1350-1355.	12.6	79
5	Visualization of Protein Coding, Long Noncoding, and Nuclear RNAs by Fluorescence in Situ Hybridization in Sections of Shoot Apical Meristems and Developing Flowers. Plant Physiology, 2020, 182, 147-158.	4.8	13
6	Cytoskeletal organization in isolated plant cells under geometry control. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 17399-17408.	7.1	37
7	Pectin homogalacturonan nanofilament expansion drives morphogenesis in plant epidermal cells. Science, 2020, 367, 1003-1007.	12.6	209
8	The Overlapping and Distinct Roles of HAM Family Genes in Arabidopsis Shoot Meristems. Frontiers in Plant Science, 2020, 11, 541968.	3.6	22
9	ETR1 Integrates Response to Ethylene and Cytokinins into a Single Multistep Phosphorelay Pathway to Control Root Growth. Molecular Plant, 2019, 12, 1338-1352.	8.3	43
10	CNN-Based Preprocessing to Optimize Watershed-Based Cell Segmentation in 3D Confocal Microscopy Images. , 2019, , .		37
11	Primary wall cellulose synthase regulates shoot apical meristem mechanics and growth. Development (Cambridge), 2019, 146, .	2.5	36
12	Primed histone demethylation regulates shoot regenerative competency. Nature Communications, 2019, 10, 1786.	12.8	52
13	Calcium signals are necessary to establish auxin transporter polarity in a plant stem cell niche. Nature Communications, 2019, 10, 726.	12.8	51
14	A gene expression map of shoot domains reveals regulatory mechanisms. Nature Communications, 2019, 10, 141.	12.8	96
15	Observing the cell in its native state: Imaging subcellular dynamics in multicellular organisms. Science, 2018, 360, .	12.6	420
16	Transcriptome dynamics at <i>Arabidopsis</i> graft junctions reveal an intertissue recognition mechanism that activates vascular regeneration. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, E2447-E2456.	7.1	124
17	Nitrate modulates stem cell dynamics in <i>Arabidopsis</i> shoot meristems through cytokinins. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 1382-1387. 	7.1	134
18	<scp>SUPERMAN</scp> regulates floral whorl boundaries through control of auxin biosynthesis. EMBO Journal, 2018, 37, .	7.8	85

#	Article	IF	CITATIONS
19	Cell segmentation in 3D confocal images using supervoxel merge-forests with CNN-based hypothesis selection. , 2018, , .		18
20	HAIRY MERISTEM with WUSCHEL confines CLAVATA3 expression to the outer apical meristem layers. Science, 2018, 361, 502-506.	12.6	137
21	SEGMENT3D: A web-based application for collaborative segmentation of 3D images used in the shoot apical meristem. , 2018, , .		6
22	The self-organization of plant microtubules inside the cell volume yields their cortical localization, stable alignment, and sensitivity to external cues. PLoS Computational Biology, 2018, 14, e1006011.	3.2	67
23	<i>SUPERMAN</i> prevents class B gene expression and promotes stem cell termination in the fourth whorl of <i>Arabidopsis thaliana</i> flowers. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 7166-7171.	7.1	74
24	Cell Cycle Control by Nuclear Sequestration of CDC20 and CDH1 mRNA in Plant Stem Cells. Molecular Cell, 2017, 68, 1108-1119.e3.	9.7	45
25	Cell type boundaries organize plant development. ELife, 2017, 6, .	6.0	106
26	Cell size and growth regulation in the <i>Arabidopsis thaliana</i> apical stem cell niche. Proceedings of the United States of America, 2016, 113, E8238-E8246.	7.1	162
27	50Âyears of Arabidopsis research: highlights and future directions. New Phytologist, 2016, 209, 921-944.	7.3	186
28	Genetics and plant development. Comptes Rendus - Biologies, 2016, 339, 240-246.	0.2	13
29	Regulation of Meristem Morphogenesis by Cell Wall Synthases in Arabidopsis. Current Biology, 2016, 26, 1404-1415.	3.9	89
30	Field Guide to Plant Model Systems. Cell, 2016, 167, 325-339.	28.9	99
31	Live confocal imaging of Arabidopsis flower buds. Developmental Biology, 2016, 419, 114-120.	2.0	48
32	An epidermis-driven mechanism positions and scales stem cell niches in plants. Science Advances, 2016, 2, e1500989.	10.3	109
33	Real-Time Lineage Analysis to Study Cell Division Orientation in the Arabidopsis Shoot Meristem. Methods in Molecular Biology, 2016, 1370, 147-167.	0.9	2
34	A Developmental Framework for Graft Formation and Vascular Reconnection in Arabidopsis thaliana. Current Biology, 2015, 25, 1306-1318.	3.9	218
35	Plant stem cell maintenance by transcriptional cross-regulation of related receptor kinases. Development (Cambridge), 2015, 142, 1043-1049.	2.5	131
36	Analysis of cell division patterns in the <i>Arabidopsis</i> shoot apical meristem. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 4815-4820.	7.1	78

#	Article	IF	CITATIONS
37	PLETHORA Genes Control Regeneration by a Two-Step Mechanism. Current Biology, 2015, 25, 1017-1030.	3.9	240
38	Plant grafting. Current Biology, 2015, 25, R183-R188.	3.9	170
39	A 3-dimensional fibre scaffold as an investigative tool for studying the morphogenesis of isolated plant cells. BMC Plant Biology, 2015, 15, 211.	3.6	9
40	Control of plant stem cell function by conserved interacting transcriptional regulators. Nature, 2015, 517, 377-380.	27.8	224
41	Subcellular and supracellular mechanical stress prescribes cytoskeleton behavior in Arabidopsis cotyledon pavement cells. ELife, 2014, 3, e01967.	6.0	323
42	Auxin depletion from leaf primordia contributes to organ patterning. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 18769-18774.	7.1	88
43	The Stem Cell Niche in Leaf Axils Is Established by Auxin and Cytokinin in <i>Arabidopsis</i> . Plant Cell, 2014, 26, 2055-2067.	6.6	165
44	Physical Forces Regulate Plant Development and Morphogenesis. Current Biology, 2014, 24, R475-R483.	3.9	146
45	Flower Development: Open Questions and Future Directions. Methods in Molecular Biology, 2014, 1110, 103-124.	0.9	26
46	LEAFY Controls Auxin Response Pathways in Floral Primordium Formation. Science Signaling, 2013, 6, ra23.	3.6	69
47	Transcription Repressor HANABA TARANU Controls Flower Development by Integrating the Actions of Multiple Hormones, Floral Organ Specification Genes, and GATA3 Family Genes in <i>Arabidopsis</i> Â. Plant Cell, 2013, 25, 83-101.	6.6	121
48	The Shoot Apical Meristem Regulatory Peptide CLV3 Does Not Activate Innate Immunity. Plant Cell, 2012, 24, 3186-3192.	6.6	35
49	Computational Analysis of Live Cell Images of the Arabidopsis thaliana Plant. Methods in Cell Biology, 2012, 110, 285-323.	1.1	13
50	The ABC model of flower development: then and now. Development (Cambridge), 2012, 139, 4095-4098.	2.5	147
51	Cell cycle regulates cell type in the <i>Arabidopsis</i> sepal. Development (Cambridge), 2012, 139, 4416-4427.	2.5	92
52	Cytokinin signaling as a positional cue for patterning the apical–basal axis of the growing <i>Arabidopsis</i> shoot meristem. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 4002-4007.	7.1	200
53	Switching on Flowers: Transient LEAFY Induction Reveals Novel Aspects of the Regulation of Reproductive Development in Arabidopsis. Frontiers in Plant Science, 2011, 2, 60.	3.6	8
54	Mutually reinforcing patterning mechanisms: authors' reply. Nature Reviews Molecular Cell Biology, 2011, 12, 533-533.	37.0	1

#	Article	IF	CITATIONS
55	Computational morphodynamics of plants: integrating development over space and time. Nature Reviews Molecular Cell Biology, 2011, 12, 265-273.	37.0	74
56	Plant Stem Cell Signaling Involves Ligand-Dependent Trafficking of the CLAVATA1 Receptor Kinase. Current Biology, 2011, 21, 345-352.	3.9	127
57	Is cell polarity under mechanical control in plants?. Plant Signaling and Behavior, 2011, 6, 137-139.	2.4	15
58	Alignment between PIN1 Polarity and Microtubule Orientation in the Shoot Apical Meristem Reveals a Tight Coupling between Morphogenesis and Auxin Transport. PLoS Biology, 2010, 8, e1000516.	5.6	392
59	Arabidopsis Regeneration from Multiple Tissues Occurs via a Root Development Pathway. Developmental Cell, 2010, 18, 463-471.	7.0	502
60	Orchestration of Floral Initiation by APETALA1. Science, 2010, 328, 85-89.	12.6	454
61	Cellâ€ŧype specific analysis of translating RNAs in developing flowers reveals new levels of control. Molecular Systems Biology, 2010, 6, 419.	7.2	155
62	Multiple feedback loops through cytokinin signaling control stem cell number within the <i>Arabidopsis</i> shoot meristem. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 16529-16534.	7.1	474
63	Floral stem cell termination involves the direct regulation of <i>AGAMOUS</i> by PERIANTHIA. Development (Cambridge), 2009, 136, 1605-1611.	2.5	84
64	Two MscS Homologs Provide Mechanosensitive Channel Activities in the Arabidopsis Root. Current Biology, 2008, 18, 730-734.	3.9	265
65	The Impact of Arabidopsis on Human Health: Diversifying Our Portfolio. Cell, 2008, 133, 939-943.	28.9	101
66	Developmental Patterning by Mechanical Signals in <i>Arabidopsis</i> . Science, 2008, 322, 1650-1655.	12.6	795
67	Transcriptome-Wide Analysis of Uncapped mRNAs in <i>Arabidopsis</i> Reveals Regulation of mRNA Degradation. Plant Cell, 2008, 20, 2571-2585.	6.6	64
68	Pattern formation during de novo assembly of the <i>Arabidopsis</i> shoot meristem. Development (Cambridge), 2007, 134, 3539-3548.	2.5	320
69	Global Expression Profiling Applied to the Analysis of Arabidopsis Stamen Development. Plant Physiology, 2007, 145, 747-762.	4.8	117
70	The Homeotic Protein AGAMOUS Controls Late Stamen Development by Regulating a Jasmonate Biosynthetic Gene in <i>Arabidopsis</i> . Plant Cell, 2007, 19, 3516-3529.	6.6	182
71	Antagonistic Regulation of PIN Phosphorylation by PP2A and PINOID Directs Auxin Flux. Cell, 2007, 130, 1044-1056.	28.9	590
72	Unravelling developmental dynamics: transient intervention and live imaging in plants. Nature Reviews Molecular Cell Biology, 2007, 8, 491-501.	37.0	42

Elliot M Meyerowitz

#	Article	IF	CITATIONS
73	Genome-Wide Analysis of Gene Expression during Early Arabidopsis Flower Development. PLoS Genetics, 2006, 2, e117.	3.5	192
74	An auxin-driven polarized transport model for phyllotaxis. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 1633-1638.	7.1	558
75	Patterns of Auxin Transport and Gene Expression during Primordium Development Revealed by Live Imaging of the Arabidopsis Inflorescence Meristem. Current Biology, 2005, 15, 1899-1911.	3.9	1,071
76	Stem-Cell Homeostasis and Growth Dynamics Can Be Uncoupled in the Arabidopsis Shoot Apex. Science, 2005, 310, 663-667.	12.6	240
77	Modeling the organization of the WUSCHEL expression domain in the shoot apical meristem. Bioinformatics, 2005, 21, i232-i240.	4.1	145
78	Real-time lineage analysis reveals oriented cell divisions associated with morphogenesis at the shoot apex of Arabidopsis thaliana. Development (Cambridge), 2004, 131, 4225-4237.	2.5	299
79	Genome-Wide Analysis of Spatial Gene Expression in Arabidopsis Flowers[W]. Plant Cell, 2004, 16, 1314-1326.	6.6	218
80	Floral homeotic genes are targets of gibberellin signaling in flower development. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101, 7827-7832.	7.1	249
81	The Arabidopsis JAGGED gene encodes a zinc finger protein that promotes leaf tissue development. Development (Cambridge), 2004, 131, 1111-1122.	2.5	230
82	Floral induction in tissue culture: a system for the analysis of LEAFY-dependent gene regulation. Plant Journal, 2004, 39, 273-282.	5.7	45
83	Repression of AGAMOUS-LIKE 24 is a crucial step in promoting flower development. Nature Genetics, 2004, 36, 157-161.	21.4	249
84	The homeotic protein AGAMOUS controls microsporogenesis by regulation of SPOROCYTELESS. Nature, 2004, 430, 356-360.	27.8	284
85	Whorl-Specific Expression of the SUPERMAN Gene of Arabidopsis Is Mediated by cis Elements in the Transcribed Region. Current Biology, 2003, 13, 1524-1530.	3.9	86
86	Cellerator: extending a computer algebra system to include biochemical arrows for signal transduction simulations. Bioinformatics, 2003, 19, 677-678.	4.1	116
87	Plants Compared to Animals: The Broadest Comparative Study of Development. Science, 2002, 295, 1482-1485.	12.6	261
88	SPLAYED, a Novel SWI/SNF ATPase Homolog, Controls Reproductive Development in Arabidopsis. Current Biology, 2002, 12, 85-94.	3.9	424
89	Transformation of shoots into roots in <i>Arabidopsis</i> embryos mutant at the <i>TOPLESS</i> locus. Development (Cambridge), 2002, 129, 2797-2806.	2.5	85
90	Site specificity of the Arabidopsis METI DNA methyltransferase demonstrated through hypermethylation of the superman locus. Plant Molecular Biology, 2001, 46, 171-183.	3.9	67

#	Article	IF	CITATIONS
91	Prehistory and History of Arabidopsis Research. Plant Physiology, 2001, 125, 15-19.	4.8	65
92	COP1 patrols the night beat. Nature Cell Biology, 2000, 2, E102-E104.	10.3	10
93	Dependence of Stem Cell Fate in Arabidopsis on a Feedback Loop Regulated by CLV3 Activity. Science, 2000, 289, 617-619.	12.6	1,021
94	Minimal regions in the Arabidopsis PISTILLATA promoter responsive to the APETALA3 / PISTILLATA feedback control do not contain a CArG box. Sexual Plant Reproduction, 2000, 13, 85-94.	2.2	21
95	Regulation of SUP Expression Identifies Multiple Regulators Involved in Arabidopsis Floral Meristem Development. Plant Cell, 2000, 12, 1607-1618.	6.6	99
96	Overexpression of a Gene Encoding a Cytochrome P450, CYP78A9, Induces Large and Seedless Fruit in Arabidopsis. Plant Cell, 2000, 12, 1541-1550.	6.6	172
97	Today we have naming of parts. Nature, 1999, 402, 731-732.	27.8	22
98	Genetic and physical characterization of a region of Arabidopsis chromosome 1 containing the CLAVATA1 gene. Plant Molecular Biology, 1999, 39, 171-176.	3.9	5
99	Use of the APETALA1 promoter to assay the in vivo function of chimeric MADS box genes. Sexual Plant Reproduction, 1999, 12, 14-26.	2.2	21
100	Signaling of Cell Fate Decisions by CLAVATA3 in Arabidopsis Shoot Meristems. Science, 1999, 283, 1911-1914.	12.6	1,214
101	Transcriptional Activation of APETALA1 by LEAFY. Science, 1999, 285, 582-584.	12.6	447
102	Genetic and molecular mechanisms of pattern formation inArabidopsis flower development. Journal of Plant Research, 1998, 111, 233-242.	2.4	24
103	A Homolog of NO APICAL MERISTEM Is an Immediate Target of the Floral Homeotic Genes APETALA3/PISTILLATA. Cell, 1998, 92, 93-103.	28.9	540
104	EIN4 and ERS2 Are Members of the Putative Ethylene Receptor Gene Family in Arabidopsis. Plant Cell, 1998, 10, 1321-1332.	6.6	546
105	Temperature-Sensitive Splicing in the Floral Homeotic Mutant apetala3-1. Plant Cell, 1998, 10, 1453-1463.	6.6	50
106	A Genetic Screen for Modifiers of UFO Meristem Activity Identifies Three Novel FUSED FLORAL ORGANS Genes Required for Early Flower Development in Arabidopsis. Genetics, 1998, 149, 579-595.	2.9	27
107	HypermethylatedSUPERMANEpigenetic Alleles inArabidopsis. Science, 1997, 277, 1100-1103.	12.6	422
108	Genetic Control of Cell Division Patterns in Developing Plants. Cell, 1997, 88, 299-308.	28.9	355

#	Article	IF	CITATIONS
109	A dominant mutant receptor from Arabidopsis confers ethylene insensitivity in heterologous plants. Nature Biotechnology, 1997, 15, 444-447.	17.5	295
110	A Polycomb-group gene regulates homeotic gene expression in Arabidopsis. Nature, 1997, 386, 44-51.	27.8	760
111	Targeted misexpression of AGAMOUS in whorl 2 of Arabidopsis flowers. Plant Journal, 1997, 11, 825-839.	5.7	45
112	Role of SUPERMAN in maintaining Arabidopsis floral whorl boundaries. Nature, 1995, 378, 199-203.	27.8	437
113	Plant developmental biology: Green genes for the 21st century. BioEssays, 1994, 16, 621-625.	2.5	8
114	An integrated genetic/RFLP map of theArabidopsis thalianagenome. Plant Journal, 1993, 3, 745-754.	5.7	123
115	An integrated genetic/RFLP map of the Arabidopsis thaliana genome. Plant Journal, 1993, 3, 745-754.	5.7	2
116	Molecular cloning approach for a putative ethylene receptor gene in Arabidopsis. Biochemical Society Transactions, 1992, 20, 73-75.	3.4	7
117	LEAFY controls floral meristem identity in Arabidopsis. Cell, 1992, 69, 843-859.	28.9	1,442
118	The homeotic gene APETALA3 of Arabidopsis thaliana encodes a MADS box and is expressed in petals and stamens. Cell, 1992, 68, 683-697.	28.9	934
119	Introduction to the <i>Arabidopsis</i> genome. , 1992, , 100-118.		30
120	The war of the whorls: genetic interactions controlling flower development. Nature, 1991, 353, 31-37.	27.8	2,752
121	Abnormal developments. Nature, 1991, 353, 385-386.	27.8	3
122	The evolution fo rhodopsins and neurotransmitter receptors. Journal of Molecular Evolution, 1991, 33, 367-378.	1.8	134
123	A genetic and molecular model for flower development in <i>Arabidopsis thaliana</i> . Development (Cambridge), 1991, 113, 157-167.	2.5	136
124	The protein encoded by the Arabidopsis homeotic gene agamous resembles transcription factors. Nature, 1990, 346, 35-39.	27.8	1,643
125	Genes Directing Flower Development in Arabidopsis. Plant Cell, 1989, 1, 37.	6.6	228
126	Mosaic evolution in theDrosophila genome. BioEssays, 1988, 9, 65-69.	2.5	5

#	Article	IF	CITATIONS
127	Arabidopsis Thaliana: A Model System for Plant Molecular Biology. Nature Biotechnology, 1987, 5, 1177-1181.	17.5	22
128	Characterization of the genome of Arabidopsis thaliana. Journal of Molecular Biology, 1986, 187, 169-183.	4.2	277
129	LETHAL MUTATIONS FLANKING THE 68C GLUE GENE CLUSTER ON CHROMOSOME 3 OF DROSOPHILA MELANOGASTER. Genetics, 1986, 112, 785-802.	2.9	37
130	The DNA of Arabidopsis thaliana. Molecular Genetics and Genomics, 1984, 194, 15-23.	2.4	273