Enrique M De La Cruz

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9478488/publications.pdf

Version: 2024-02-01

111 papers

6,301 citations

66250 44 h-index 74 g-index

114 all docs

114 docs citations

times ranked

114

5368 citing authors

#	Article	IF	CITATIONS
1	Actin Network Architecture Can Determine Myosin Motor Activity. Science, 2012, 336, 1310-1314.	6.0	281
2	Relating biochemistry and function in the myosin superfamily. Current Opinion in Cell Biology, 2004, 16, 61-67.	2.6	256
3	Architecture and Connectivity Govern Actin Network Contractility. Current Biology, 2016, 26, 616-626.	1.8	221
4	Kinetic Mechanism and Regulation of Myosin VI. Journal of Biological Chemistry, 2001, 276, 32373-32381.	1.6	218
5	Cofilin Increases the Bending Flexibility of Actin Filaments: Implications for Severing and Cell Mechanics. Journal of Molecular Biology, 2008, 381, 550-558.	2.0	200
6	Cofilin Tunes the Nucleotide State of Actin Filaments and Severs at Bare and Decorated Segment Boundaries. Current Biology, 2011, 21, 862-868.	1.8	192
7	Mechanochemical coupling of two substeps in a single myosin V motor. Nature Structural and Molecular Biology, 2004, $11,877-883$.	3.6	166
8	The Structural Basis for Activation of the Rab Ypt1p by the TRAPP Membrane-Tethering Complexes. Cell, 2008, 133, 1202-1213.	13.5	166
9	Interactions ofAcanthamoebaProfilin with Actin and Nucleotides Bound to Actinâ€. Biochemistry, 1998, 37, 10871-10880.	1.2	152
10	Cofilin Binding to Muscle and Non-muscle Actin Filaments: Isoform-dependent Cooperative Interactions. Journal of Molecular Biology, 2005, 346, 557-564.	2.0	150
11	Cofilin Increases the Torsional Flexibility and Dynamics of Actin Filaments. Journal of Molecular Biology, 2005, 353, 990-1000.	2.0	143
12	Chapter 6 Kinetic and Equilibrium Analysis of the Myosin ATPase. Methods in Enzymology, 2009, 455, 157-192.	0.4	136
13	ADP Inhibition of Myosin V ATPase Activity. Biophysical Journal, 2000, 79, 1524-1529.	0.2	134
14	Cofilin-Linked Changes in Actin Filament Flexibility Promote Severing. Biophysical Journal, 2011, 101, 151-159.	0.2	131
15	How cofilin severs an actin filament. Biophysical Reviews, 2009, 1, 51-59.	1.5	113
16	The ATPase Cycle Mechanism of the DEAD-box rRNA Helicase, DbpA. Journal of Molecular Biology, 2008, 377, 193-205.	2.0	103
17	ENPP1-Fc prevents mortality and vascular calcifications in rodent model of generalized arterial calcification of infancy. Nature Communications, 2015, 6, 10006.	5.8	102
18	Actin filament remodeling by actin depolymerization factor/cofilin. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 7299-7304.	3.3	100

#	Article	IF	CITATIONS
19	Kinetics and Thermodynamics of Phalloidin Binding to Actin Filaments from Three Divergent Speciesâ€. Biochemistry, 1996, 35, 14054-14061.	1.2	97
20	ATP Utilization and RNA Conformational Rearrangement by DEAD-Box Proteins. Annual Review of Biophysics, 2012, 41, 247-267.	4.5	97
21	Insights regarding guanine nucleotide exchange from the structure of a DENN-domain protein complexed with its Rab GTPase substrate. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 18672-18677.	3.3	96
22	Energetics and Kinetics of Cooperative Cofilin–Actin Filament Interactions. Journal of Molecular Biology, 2006, 361, 257-267.	2.0	94
23	Load-dependent ADP binding to myosins V and VI: Implications for subunit coordination and function. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 7714-7719.	3.3	91
24	Biophysics of actin filament severing by cofilin. FEBS Letters, 2013, 587, 1215-1219.	1.3	88
25	Actin and Light Chain Isoform Dependence of Myosin V Kineticsâ€. Biochemistry, 2000, 39, 14196-14202.	1.2	87
26	Actin Mechanics and Fragmentation. Journal of Biological Chemistry, 2015, 290, 17137-17144.	1.6	86
27	Transient kinetic analysis of rhodamine phalloidin binding to actin filaments. Biochemistry, 1994, 33, 14387-14392.	1.2	84
28	Magnesium, ADP, and Actin Binding Linkage of Myosin V: Evidence for Multiple Myosin Vâ^'ADP and Actomyosin Vâ^'ADP Statesâ€. Biochemistry, 2005, 44, 8826-8840.	1.2	82
29	Pathway of ATP utilization and duplex rRNA unwinding by the DEAD-box helicase, DbpA. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 4046-4050.	3.3	80
30	Identification of cation-binding sites on actin that drive polymerization and modulate bending stiffness. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 16923-16927.	3.3	79
31	Kinetic Characterization of the Weak Binding States of Myosin Vâ€. Biochemistry, 2002, 41, 8508-8517.	1.2	75
32	Nucleotide-Free Actin: Stabilization by Sucrose and Nucleotide Binding Kinetics. Biochemistry, 1995, 34, 5452-5461.	1.2	72
33	Origin of Twist-Bend Coupling in Actin Filaments. Biophysical Journal, 2010, 99, 1852-1860.	0.2	72
34	Polymerization and structure of nucleotide-free actin filaments 1 1Edited by W. Baumeister. Journal of Molecular Biology, 2000, 295, 517-526.	2.0	68
35	Thymosin- $\hat{1}^24$ Changes the Conformation and Dynamics of Actin Monomers. Biophysical Journal, 2000, 78, 2516-2527.	0.2	68
36	Vertebrate Myosin VIIb Is a High Duty Ratio Motor Adapted for Generating and Maintaining Tension. Journal of Biological Chemistry, 2005, 280, 39665-39676.	1.6	66

#	Article	IF	Citations
37	Mechanoregulated inhibition of formin facilitates contractile actomyosin ring assembly. Nature Communications, 2017, 8, 703.	5.8	66
38	Identification of small-molecule inhibitors of autotaxin that inhibit melanoma cell migration and invasion. Molecular Cancer Therapeutics, 2008, 7, 3352-3362.	1.9	65
39	Structures of cofilin-induced structural changes reveal local and asymmetric perturbations of actin filaments. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 1478-1484.	3.3	64
40	Mechanism of Mss116 ATPase Reveals Functional Diversity of DEAD-Box Proteins. Journal of Molecular Biology, 2011, 409, 399-414.	2.0	63
41	The Kinetics of Cooperative Cofilin Binding Reveals Two States of the Cofilin-Actin Filament. Biophysical Journal, 2010, 98, 1893-1901.	0.2	57
42	Mechanism of Nucleotide Binding to Actomyosin VI. Journal of Biological Chemistry, 2004, 279, 38608-38617.	1.6	56
43	Structure-Based Analysis of Toxoplasma gondii Profilin: A Parasite-Specific Motif Is Required for Recognition by Toll-Like Receptor 11. Journal of Molecular Biology, 2010, 403, 616-629.	2.0	54
44	Regulation of G protein-coupled Receptor Kinase 5 (GRK5) by Actin. Journal of Biological Chemistry, 1998, 273, 20653-20657.	1.6	52
45	Thermodynamics of Nucleotide Binding to Actomyosin V and VI:  A Positive Heat Capacity Change Accompanies Strong ADP Binding. Biochemistry, 2005, 44, 10238-10249.	1.2	51
46	The actin filament twist changes abruptly at boundaries between bare and cofilin-decorated segments. Journal of Biological Chemistry, 2018, 293, 5377-5383.	1.6	50
47	Actin Filament Strain Promotes Severing and Cofilin Dissociation. Biophysical Journal, 2017, 112, 2624-2633.	0.2	49
48	Mechanical Heterogeneity Favors Fragmentation of Strained Actin Filaments. Biophysical Journal, 2015, 108, 2270-2281.	0.2	48
49	Equilibrium and Kinetic Analysis of Nucleotide Binding to the DEAD-Box RNA Helicase DbpAâ€. Biochemistry, 2005, 44, 959-970.	1.2	47
50	Force and phosphate release from Arp2/3 complex promote dissociation of actin filament branches. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 13519-13528.	3.3	47
51	Actin-induced Closure of the Actin-binding Cleft of Smooth Muscle Myosin. Journal of Biological Chemistry, 2002, 277, 24114-24119.	1.6	45
52	Take advantage of time in your experiments: a guide to simple, informative kinetics assays. Molecular Biology of the Cell, 2013, 24, 1103-1110.	0.9	45
53	Site-specific cation release drives actin filament severing by vertebrate cofilin. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 17821-17826.	3.3	45
54	Molecular Origins of Cofilin-Linked Changes in Actin Filament Mechanics. Journal of Molecular Biology, 2013, 425, 1225-1240.	2.0	44

#	Article	IF	Citations
55	Myosin Isoform Determines the Conformational Dynamics and Cooperativity of Actin Filaments in the Strongly Bound Actomyosin Complex. Journal of Molecular Biology, 2010, 396, 501-509.	2.0	42
56	Competitive displacement of cofilin can promote actin filament severing. Biochemical and Biophysical Research Communications, 2013, 438, 728-731.	1.0	42
57	Thymosin \hat{I}^24 Induces a Conformational Change in Actin Monomers. Biophysical Journal, 2006, 90, 985-992.	0.2	41
58	Quantitative full time course analysis of nonlinear enzyme cycling kinetics. Scientific Reports, 2013, 3, 2658.	1.6	40
59	A Myosinâ€V Inhibitor Based on Privileged Chemical Scaffolds. Angewandte Chemie - International Edition, 2010, 49, 8484-8488.	7.2	39
60	Multi-Platform Compatible Software for Analysis of Polymer Bending Mechanics. PLoS ONE, 2014, 9, e94766.	1.1	39
61	Cations Stiffen Actin Filaments by Adhering a Key Structural Element to Adjacent Subunits. Journal of Physical Chemistry B, 2016, 120, 4558-4567.	1.2	39
62	Regulation of Actin by Ion-Linked Equilibria. Biophysical Journal, 2013, 105, 2621-2628.	0.2	37
63	14-3-3 proteins activate Pseudomonas exotoxins-S and -T by chaperoning a hydrophobic surface. Nature Communications, 2018, 9, 3785.	5.8	37
64	The Tail Domain of Myosin Va Modulates Actin Binding to One Head. Journal of Biological Chemistry, 2006, 281, 31326-31336.	1.6	35
65	Phosphomimetic S3D cofilin binds but only weakly severs actin filaments. Journal of Biological Chemistry, 2017, 292, 19565-19579.	1.6	35
66	Structural and Energetic Analysis of Activation by a Cyclic Nucleotide Binding Domain. Journal of Molecular Biology, 2008, 381, 655-669.	2.0	33
67	Effects of Solution Crowding on Actin Polymerization Reveal the Energetic Basis for Nucleotide-Dependent Filament Stability. Journal of Molecular Biology, 2008, 378, 540-550.	2.0	31
68	Kinetic Analysis of Autotaxin Reveals Substrate-specific Catalytic Pathways and a Mechanism for Lysophosphatidic Acid Distribution. Journal of Biological Chemistry, 2011, 286, 30130-30141.	1.6	29
69	Insights into the Cooperative Nature of ATP Hydrolysis in Actin Filaments. Biophysical Journal, 2018, 115, 1589-1602.	0.2	29
70	Rab34 GTPase mediates ciliary membrane formation in the intracellular ciliogenesis pathway. Current Biology, 2021, 31, 2895-2905.e7.	1.8	25
71	Robust processivity of myosin V under off-axis loads. Nature Chemical Biology, 2010, 6, 300-305.	3.9	23
72	Direct Observation of the Myosin Va Recovery Stroke That Contributes to Unidirectional Stepping along Actin. PLoS Biology, 2011, 9, e1001031.	2.6	23

#	Article	IF	CITATIONS
73	Regulation of axon growth by myosin II–dependent mechanocatalysis of cofilin activity. Journal of Cell Biology, 2019, 218, 2329-2349.	2.3	23
74	Kinetic Analysis of the Guanine Nucleotide Exchange Activity of TRAPP, a Multimeric Ypt1p Exchange Factor. Journal of Molecular Biology, 2009, 389, 275-288.	2.0	22
75	Plastic Deformation and Fragmentation of Strained Actin Filaments. Biophysical Journal, 2019, 117, 453-463.	0.2	19
76	Hydrodynamic Characterization of the DEAD-box RNA Helicase DbpA. Journal of Molecular Biology, 2006, 355, 697-707.	2.0	18
77	Analyzing ATP Utilization by DEAD-Box RNA Helicases Using Kinetic and Equilibrium Methods. Methods in Enzymology, 2012, 511, 29-63.	0.4	18
78	Clusters of a Few Bound Cofilins Sever Actin Filaments. Journal of Molecular Biology, 2021, 433, 166833.	2.0	18
79	Pi Release Limits the Intrinsic and RNA-Stimulated ATPase Cycles of DEAD-Box Protein 5 (Dbp5). Journal of Molecular Biology, 2016, 428, 492-508.	2.0	17
80	Structural basis of fast- and slow-severing actin–cofilactin boundaries. Journal of Biological Chemistry, 2021, 296, 100337.	1.6	15
81	STRUCTURAL BIOLOGY: Actin' Up. Science, 2001, 293, 616-618.	6.0	15
82	Alteration in the cavity size adjacent to the active site of RB69 DNA polymerase changes its conformational dynamics. Nucleic Acids Research, 2013, 41, 9077-9089.	6.5	14
83	Improving the Pharmacodynamics and In Vivo Activity of ENPP1â€Fc Through Protein and Glycosylation Engineering. Clinical and Translational Science, 2021, 14, 362-372.	1.5	14
84	Metavinculin Tunes the Flexibility and the Architecture of Vinculin-Induced Bundles of Actin Filaments. Journal of Molecular Biology, 2015, 427, 2782-2798.	2.0	13
85	Holding the reins on Myosin V. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 13719-13720.	3.3	11
86	The Tail Domain of Myosin Va Modulates Actin Binding to One Head. Journal of Biological Chemistry, 2006, 281, 31326-31336.	1.6	11
87	Neuronal Calcium Sensor 1 Has Two Variants with Distinct Calcium Binding Characteristics. PLoS ONE, 2016, 11, e0161414.	1.1	10
88	Actin Filament Dynamics in the Actomyosin VI Complex Is Regulated Allosterically by Calcium–Calmodulin Light Chain. Journal of Molecular Biology, 2011, 413, 584-592.	2.0	8
89	Nup159 Weakens Gle1 Binding to Dbp5 But Does Not Accelerate ADP Release. Journal of Molecular Biology, 2018, 430, 2080-2095.	2.0	8
90	Thermal fracture kinetics of heterogeneous semiflexible polymers. Soft Matter, 2020, 16, 2017-2024.	1.2	7

#	Article	IF	CITATIONS
91	Directional allosteric regulation of protein filament length. Physical Review E, 2020, 101, 032409.	0.8	6
92	The nucleoporin Gle1 activates DEAD-box protein 5 (Dbp5) by promoting ATP binding and accelerating rate limiting phosphate release. Nucleic Acids Research, 2022, 50, 3998-4011.	6.5	6
93	Active cargo positioning in antiparallel transport networks. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 14835-14842.	3.3	5
94	How the Load and the Nucleotide State Affect the Actin Filament Binding Mode of the Molecular Motor Myosin V. Journal of the Korean Physical Society, 2008, 53, 1726-1731.	0.3	3
95	Watching the walk: Observing chemoâ€mechanical coupling in a processive myosin motor. HFSP Journal, 2009, 3, 67-70.	2.5	2
96	Plusâ€end directed myosins accelerate actin filament sliding by singleâ€headed myosin VI. Cytoskeleton, 2012, 69, 59-69.	1.0	2
97	Contributions from All Over: Widely Distributed Residues in Thymosin Beta-4 Affect the Kinetics and Stability of Actin Binding. Annals of the New York Academy of Sciences, 2007, 1112, 38-44.	1.8	1
98	Cofilin Induces a Local Change in the Twist of Actin Filaments. Biophysical Journal, 2018, 114, 145a.	0.2	1
99	Actin-Binding Proteins: An Overview. Results and Problems in Cell Differentiation, 2001, 32, 123-134.	0.2	1
100	1P534 Loading direction controls the ADP affinity of myosin V.(26. Single molecule biophysics,Poster) Tj ETQq0 C	0 rgBT /C	verlock 10 Ti
101	2P132 Angular dependence of ADP dissociation kinetics in myosin V under directional loading (Molecular motors, Oral Presentations). Seibutsu Butsuri, 2007, 47, S146.	0.0	0
102	1P-124 Versatility of the unbinding force measurements at the single-molecule level adapted to different molecular motors (Molecular motor, The 47th Annual Meeting of the Biophysical Society of) Tj ETQq0 0 (OngBT/Ov	erdock 10 Tf
103	$1P$ - 138 Role of the lever arm in the subunit coordination in myosin V(Molecular motor, The 47th) Tj ETQq $1\ 1\ 0.78$	4314 rgB	「Overlock 1
104	1TA4-06 Role of the lever arm in the subunit coordination in myosin V(The 47th Annual Meeting of the) Tj ETQq0	0.0rgBT/	Oyerlock 10
105	3P159 Impact of the off-axis loads on the processivity of myosin VI(Molecular motor,The 48th Annual) Tj ETQq1 I	0,784314	4 rgBT /Overl
106	Opening remarks from the Editors. Biophysical Reviews, 2018, 10, 1479-1480.	1.5	0
107	Severed Actin and Microtubules with Motors Walking All Over Them: Cryo-EM Studies of Seriously Perturbed Helical Assemblies. Microscopy and Microanalysis, 2019, 25, 1362-1363.	0.2	0
108	The ATPase cycle of the RNA helicase protein NS3 from hepatitis C virus. FASEB Journal, 2011, 25, 911.1.	0.2	0

#	Article	IF	CITATIONS
109	Molecular Structure and Biological Activity of NPP-4, An Endothelial Cell Surface Pyrophosphatase/Phosphodiesterase That Stimulates Platelet Aggregation and Secretion Via Liberation of ADP Upon Hydrolysis of Diadenosine Triphosphate. Blood, 2011, 118, 701-701.	0.6	O
110	ATPase coupling in the processive RNA helicase NS3 from hepatitis C virus. FASEB Journal, 2013, 27, 999.2.	0.2	0
111	ATP utilization by DExD/Hâ€box RNA helicases – molecular motor proteins that couple ATPase activity with RNA rearrangement FASEB Journal, 2013, 27, 454.1.	0.2	0