Wangde Dai

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9477843/publications.pdf Version: 2024-02-01

WANCOF DAL

#	Article	IF	CITATIONS
1	Allogeneic Mesenchymal Stem Cell Transplantation in Postinfarcted Rat Myocardium. Circulation, 2005, 112, 214-223.	1.6	534
2	Thickening of the Infarcted Wall by Collagen Injection Improves Left Ventricular Function in Rats. Journal of the American College of Cardiology, 2005, 46, 714-719.	1.2	252
3	Survival and maturation of human embryonic stem cell-derived cardiomyocytes in rat hearts. Journal of Molecular and Cellular Cardiology, 2007, 43, 504-516.	0.9	153
4	Reduction of Ischemia/Reperfusion Injury With Bendavia, a Mitochondriaâ€Targeting Cytoprotective Peptide. Journal of the American Heart Association, 2012, 1, e001644.	1.6	130
5	Delivering stem cells to the heart in a collagen matrix reduces relocation of cells to other organs as as assessed by nanoparticle technology. Regenerative Medicine, 2009, 4, 387-395.	0.8	84
6	Role of a paracrine action of mesenchymal stem cells in the improvement of left ventricular function after coronary artery occlusion in rats. Regenerative Medicine, 2007, 2, 63-68.	0.8	82
7	Functional and Histological Assessment of an Experimental Model of Takotsubo's Cardiomyopathy. Journal of the American Heart Association, 2014, 3, e000921.	1.6	66
8	Transplantation of neonatal cardiomyocytes after permanent coronary artery occlusion increases regional blood flow of infarcted myocardium. Journal of Molecular and Cellular Cardiology, 2003, 35, 607-613.	0.9	64
9	New and revisited approaches to preserving the reperfused myocardium. Nature Reviews Cardiology, 2017, 14, 679-693.	6.1	56
10	Mesenchymal stem cell administration at coronary artery reperfusion in the rat by two delivery routes: A quantitative assessment. Life Sciences, 2008, 83, 511-515.	2.0	51
11	Bendavia restores mitochondrial energy metabolism gene expression and suppresses cardiac fibrosis in the border zone of the infarcted heart. Life Sciences, 2015, 141, 170-178.	2.0	50
12	Therapeutic Hypothermia Reduces the Inflammatory Response Following Ischemia/Reperfusion Injury in Rat Hearts. Therapeutic Hypothermia and Temperature Management, 2017, 7, 162-170.	0.3	34
13	Rapid Induction of Hypothermia by the ThermoSuit System Profoundly Reduces Infarct Size and Anatomic Zone of No Reflow Following Ischemia–Reperfusion in Rabbit and Rat Hearts. Journal of Cardiovascular Pharmacology and Therapeutics, 2015, 20, 193-202.	1.0	29
14	E•igarette or Vaping Product Use–Associated Lung Injury Produced in an Animal Model From Electronic Cigarette Vapor Exposure Without Tetrahydrocannabinol or Vitamin E Oil. Journal of the American Heart Association, 2020, 9, e017368.	1.6	29
15	Stem cell transplantation for the treatment of myocardial infarction. Transplant Immunology, 2005, 15, 91-97.	0.6	28
16	Delayed therapeutic hypothermia protects against the myocardial no-reflow phenomenon independently of myocardial infarct size in a rat ischemia/reperfusion model. International Journal of Cardiology, 2017, 236, 400-404.	0.8	28
17	Implantation of Immature Neonatal Cardiac Cells Into the Wall of the Aorta in Rats. Circulation, 2004, 110, 324-329.	1.6	21
18	Rapid Surface Cooling by ThermoSuit System Dramatically Reduces Scar Size, Prevents Postâ€Infarction Adverse Left Ventricular Remodeling, and Improves Cardiac Function in Rats. Journal of the American Heart Association, 2015, 4, .	1.6	21

WANGDE DAI

#	Article	IF	CITATIONS
19	Intramyocardial Injection of Heart Tissue-Derived Extracellular Matrix Improves Postinfarction Cardiac Function in Rats. Journal of Cardiovascular Pharmacology and Therapeutics, 2013, 18, 270-279.	1.0	20
20	Combined Remote Perconditioning and Postconditioning Failed to Attenuate Infarct Size and Contractile Dysfunction in a Rat Model of Coronary Artery Occlusion. Journal of Cardiovascular Pharmacology and Therapeutics, 2014, 19, 567-573.	1.0	20
21	Cardioprotective Effects of Mitochondria-Targeted Peptide SBT-20 in two Different Models of Rat Ischemia/Reperfusion. Cardiovascular Drugs and Therapy, 2016, 30, 559-566.	1.3	19
22	Cardioprotection: Where to from here?. Cardiovascular Drugs and Therapy, 2017, 31, 53-61.	1.3	19
23	Cardioprotection of Insulin-Like Growth Factor-1 During Reperfusion Therapy. Circulation: Cardiovascular Interventions, 2011, 4, 311-313.	1.4	18
24	Myocardial regeneration by embryonic stem cell transplantation: present and future trends. Expert Review of Cardiovascular Therapy, 2006, 4, 375-383.	0.6	17
25	Remote Ischemic Conditioning in Acute Myocardial Infarction and Shock States. Journal of Cardiovascular Pharmacology and Therapeutics, 2020, 25, 103-109.	1.0	17
26	Bone Marrow-Derived Cell Transplantation Therapy for Myocardial Infarction: Lessons Learned and Future Questions. American Journal of Transplantation, 2011, 11, 2297-2301.	2.6	16
27	Approaches to Improving Cardiac Structure and Function During and After an Acute Myocardial Infarction. Journal of Cardiovascular Pharmacology and Therapeutics, 2016, 21, 363-367.	1.0	16
28	Potential Role of Renin-Angiotensin System Blockade for Preventing Myocardial Ischemia/Reperfusion Injury and Remodeling after Myocardial Infarction. Postgraduate Medicine, 2011, 123, 49-55.	0.9	14
29	Relationship Between Cyclooxygenase-2 Inhibition and Thrombogenesis. Journal of Cardiovascular Pharmacology and Therapeutics, 2004, 9, 51-59.	1.0	13
30	Cardioprotective Effects of Angiotensin II Type 1 Receptor Blockade with Olmesartan on Reperfusion Injury in a Rat Myocardial Ischemiaâ€Reperfusion Model. Cardiovascular Therapeutics, 2010, 28, 30-37.	1.1	12
31	Effects of Acetaminophen on Myocardial Infarct Size in Rats. Journal of Cardiovascular Pharmacology and Therapeutics, 2003, 8, 277-284.	1.0	11
32	First millimeter-wave animal in vivo measurements of L-Glucose and D-Glucose: Further steps towards a non-invasive glucometer. , 2016, , .		11
33	Experience from Experimental Cell Transplantation Therapy of Myocardial Infarction: What have we Learned?. Cell Transplantation, 2013, 22, 563-568.	1.2	10
34	ATL 313, A Selective A2A Adenosine Receptor Agonist, Reduces Myocardial Infarct Size in a Rat Ischemia/Reperfusion Model. Open Cardiovascular Medicine Journal, 2009, 3, 166-172.	0.6	9
35	The Therapeutic Effect of Cell Transplantation Versus Noncellular Biomaterial Implantation on Cardiac Structure and Function Following Myocardial Infarction. Journal of Cardiovascular Pharmacology and Therapeutics, 2014, 19, 350-357.	1.0	8
36	No-Reflow Phenomenon. A New Target for Therapy of Acute Myocardial Infarction Independent of Myocardial Infarct Size. Journal of Cardiovascular Pharmacology and Therapeutics, 2018, 23, 273-276.	1.0	8

Wangde Dai

#	Article	IF	CITATIONS
37	Cardiac cells implanted within the outer aortic wall of rats generate measurable contractile force. Regenerative Medicine, 2006, 1, 119-124.	0.8	6
38	Effects of OP2113 on Myocardial Infarct Size and No Reflow in a Rat Myocardial Ischemia/Reperfusion Model. Cardiovascular Drugs and Therapy, 2022, 36, 217-227.	1.3	6
39	Scalability of cardiovascular intrinsic frequencies: Validations in preclinical models and non-invasive clinical studies. Life Sciences, 2021, 284, 119880.	2.0	6
40	New therapies for reducing post-myocardial left ventricular remodeling. Annals of Translational Medicine, 2015, 3, 20.	0.7	6
41	Therapeutic Hypothermia Improves Long-Term Survival and Blunts Inflammation in Rats During Resuscitation of Hemorrhagic Shock. Therapeutic Hypothermia and Temperature Management, 2020, 10, 237-243.	0.3	5
42	Experimental Cell Transplantation Therapy in Rat Myocardial Infarction Model Including Nude Rat Preparation. Methods in Molecular Biology, 2010, 660, 99-109.	0.4	4
43	Rebuilding the infarcted heart with noncellular material. Regenerative Medicine, 2015, 10, 683-685.	0.8	4
44	Improved Long-term Survival with Remote Limb Ischemic Preconditioning in a Rat Fixed-Pressure Hemorrhagic Shock Model. Cardiovascular Drugs and Therapy, 2019, 33, 139-147.	1.3	4
45	Gabrb3 endothelial cell-specific knockout mice display abnormal blood flow, hypertension, and behavioral dysfunction. Scientific Reports, 2022, 12, 4922.	1.6	4
46	Acute administration of nicotine induces transient elevation of blood pressure and increases myocardial infarct size in rats. Heliyon, 2020, 6, e05450.	1.4	3
47	Myocardial hypothermia induced after reperfusion does not prevent adverse left ventricular remodeling nor improve cardiac function. Life Sciences, 2019, 229, 98-103.	2.0	1
48	Different Effects of Volatile and Nonvolatile Anesthetic Agents on Long-Term Survival in an Experimental Model of Hemorrhagic Shock. Journal of Cardiovascular Pharmacology and Therapeutics, 2020, 25, 346-353.	1.0	1
49	Effects of Chronic Electronic Cigarette Vapor Exposure and Standard Cigarette Smoke on Myocardial Infarction and Noâ€reflow in a Rat Model. FASEB Journal, 2021, 35, .	0.2	1
50	Potential for stem cell-derived biologic pumps for cardiovascular and other medical therapies. Regenerative Medicine, 2019, 14, 617-619.	0.8	0
51	Bloodâ€based biomarkers as early predictor of mortality in experimental hemorrhagic shock. FASEB Journal, 2018, 32, 575.4.	0.2	0
52	Remote limb ischemic preconditioning improves postâ€resuscitation long term survival in a rat fixed pressure hemorrhagic shock model. FASEB Journal, 2018, 32, 575.3.	0.2	0