
Jasmina M DimitriÄ**‡**Marković

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9477664/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Synthesis, Crystallographic, Quantum Chemical, Antitumor, and Molecular Docking/Dynamic Studies of 4-Hydroxycoumarin-Neurotransmitter Derivatives. International Journal of Molecular Sciences, 2022, 23, 1001.	4.1	31
2	Impact of the phenolic O–H <i>vs.</i> C-ring C–H bond cleavage on the antioxidant potency of dihydrokaempferol. New Journal of Chemistry, 2021, 45, 7977-7986.	2.8	12
3	Synthesis and Biological Screening of New 4-Hydroxycoumarin Derivatives and Their Palladium(II) Complexes. Oxidative Medicine and Cellular Longevity, 2021, 2021, 1-18.	4.0	10
4	Green One-Pot Synthesis of Coumarin-Hydroxybenzohydrazide Hybrids and Their Antioxidant Potency. Antioxidants, 2021, 10, 1106.	5.1	31
5	Theoretical Study of Radical Inactivation, LOX Inhibition, and Iron Chelation: The Role of Ferulic Acid in Skin Protection against UVA Induced Oxidative Stress. Antioxidants, 2021, 10, 1303.	5.1	15
6	Toxicity, structural analysis, and molecular docking studies of selected isonicotinohydrazide analogs. , 2021, , .		0
7	Antioxidative potential of ferulic acid phenoxyl radical. Phytochemistry, 2020, 170, 112218.	2.9	40
8	Comparative antiradical activity and molecular Docking/Dynamics analysis of octopamine and norepinephrine: the role of OH groups. Computational Biology and Chemistry, 2020, 84, 107170.	2.3	24
9	Advanced oxidation process of coumarins by hydroxyl radical: Towards the new mechanism leading to less toxic products. Chemical Engineering Journal, 2020, 395, 124971.	12.7	61
10	DO EQUOL'S C-RING HYDROGENS CONTRIBUTE TO FREE RADICAL SCAVENGING?. Journal of the Serbian Society for Computational Mechanics, 2020, , 45-58.	0.4	2
11	The role of guaiacyl moiety in free radical scavenging by 3,5-dihydroxy-4-methoxybenzyl alcohol: thermodynamics of 3H+/3eâ^' mechanisms. Molecular Physics, 2019, 117, 207-217.	1.7	7
12	Synthesis and Characterization of 3-(1-((3,4-Dihydroxyphenethyl)amino)ethylidene)-chroman-2,4-dione as a Potential Antitumor Agent. Oxidative Medicine and Cellular Longevity, 2019, 2019, 1-12.	4.0	18
13	Experimental and theoretical elucidation of structural and antioxidant properties of vanillyImandelic acid and its carboxylate anion. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2018, 198, 61-70.	3.9	28
14	Synthesis, spectroscopic characterization (FT-IR, FT-Raman, and NMR), quantum chemical studies and molecular docking of 3-(1-(phenylamino)ethylidene)-chroman-2,4-dione. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2018, 195, 31-40.	3.9	36
15	Thermodynamic and kinetic analysis of the reaction between biological catecholamines and chlorinated methylperoxy radicals. Molecular Physics, 2018, 116, 1166-1178.	1.7	13
16	Theoretical study of the thermodynamics of the mechanisms underlying antiradical activity of cinnamic acid derivatives. Food Chemistry, 2018, 246, 481-489.	8.2	54
17	Antiradical activity of catecholamines and metabolites of dopamine: theoretical and experimental study. Physical Chemistry Chemical Physics, 2017, 19, 12970-12980.	2.8	45
18	Antioxidative mechanisms in chlorogenic acid. Food Chemistry, 2017, 237, 390-398.	8.2	93

#	Article	IF	CITATIONS
19	An insight into anti-biofilm and anti-quorum sensing activities of the selected anthocyanidins: the case study of <i>Pseudomonas aeruginosa</i> PAO1. Natural Product Research, 2017, 31, 1177-1180.	1.8	28
20	Free radical scavenging potency of quercetin catecholic colonic metabolites: Thermodynamics of 2H+/2eâ^' processes. Food Chemistry, 2017, 218, 144-151.	8.2	83
21	Antiradical activity of delphinidin, pelargonidin and malvin towards hydroxyl and nitric oxide radicals: The energy requirements calculations as a prediction of the possible antiradical mechanisms. Food Chemistry, 2017, 218, 440-446.	8.2	52
22	Free Radical Scavenging Potency of Dihydroxybenzoic Acids. Journal of Chemistry, 2017, 2017, 1-9.	1.9	27
23	Synergic application of spectroscopic and theoretical methods to the chlorogenic acid structure elucidation. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2016, 164, 67-75.	3.9	13
24	Free radical scavenging and COX-2 inhibition by simple colon metabolites of polyphenols: A theoretical approach. Computational Biology and Chemistry, 2016, 65, 45-53.	2.3	28
25	Free radical scavenging potency of 3-hydroxyphenylacetic acid: A DFT study. , 2015, , .		О
26	QSAR of the free radical scavenging potency of selected hydroxybenzoic acids and simple phenolics. Comptes Rendus Chimie, 2015, 18, 492-498.	0.5	29
27	Towards an improved prediction of the free radical scavenging potency of flavonoids: The significance of double PCET mechanisms. Food Chemistry, 2014, 152, 578-585.	8.2	54
28	Oxidation of kaempferol and its iron(III) complex by DPPH radicals: spectroscopic and theoretical study. Monatshefte Für Chemie, 2014, 145, 557-563.	1.8	17
29	Investigation of the radical scavenging potency of hydroxybenzoic acids and their carboxylate anions. Monatshefte Für Chemie, 2014, 145, 953-962.	1.8	18
30	The preferred radical scavenging mechanisms of fisetin and baicalein towards oxygen-centred radicals in polar protic and polar aprotic solvents. RSC Advances, 2014, 4, 32228-32236.	3.6	24
31	Energy requirements of the reactions of kaempferol and selected radical species in different media: towards the prediction of the possible radical scavenging mechanisms. Structural Chemistry, 2014, 25, 1795-1804.	2.0	29
32	A DFT and PM6 study of free radical scavenging activity of ellagic acid. Monatshefte Für Chemie, 2013, 144, 803-812.	1.8	25
33	A joint application of spectroscopic, electrochemical and theoretical approaches in evaluation of the radical scavenging activity of 3-OH flavones and their iron complexes towards different radical species. Dalton Transactions, 2012, 41, 7295.	3.3	21
34	Structure and reactivity of baicalein radical cation. International Journal of Quantum Chemistry, 2012, 112, 2009-2017.	2.0	7
35	Comparative spectroscopic and mechanistic study of chelation properties of fisetin with iron in aqueous buffered solutions. Implications on in vitro antioxidant activity. Dalton Transactions, 2011, 40, 4560.	3.3	23
36	Application of comparative vibrational spectroscopic and mechanistic studies in analysis of fisetin structure. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2011, 83, 120-129.	3.9	21

#	Article	IF	CITATIONS
37	Mechanistic pathways for the reaction of quercetin with hydroperoxy radical. Theoretical Chemistry Accounts, 2010, 127, 69-80.	1.4	40
38	Spectroscopic and Theoretical Study of Cyanidin–Aluminum (III) Complexes. Spectroscopy Letters, 2008, 41, 104-115.	1.0	5
39	Delphinidin–Aluminum(III) Complexes in Aqueous and Non-Aqueous Media: Spectroscopic Characterization and Theoretical Study. Monatshefte Für Chemie, 2007, 138, 1225-1232.	1.8	3
40	Electronic and infrared vibrational analysis of cyanidin–quercetin copigment complex. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2005, 62, 673-680.	3.9	32
41	The copigmentation effect of sinapic acid on malvin: a spectroscopic investigation on colour enhancement. Journal of Photochemistry and Photobiology B: Biology, 2005, 78, 223-228.	3.8	62