Humira Sonah

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9477655/publications.pdf

Version: 2024-02-01

85 papers 5,111 citations

126708 33 h-index 98622 67 g-index

90 all docs

90 docs citations

90 times ranked 5054 citing authors

#	Article	IF	CITATIONS
1	The controversies of silicon's role in plant biology. New Phytologist, 2019, 221, 67-85.	3.5	439
2	An Improved Genotyping by Sequencing (GBS) Approach Offering Increased Versatility and Efficiency of SNP Discovery and Genotyping. PLoS ONE, 2013, 8, e54603.	1.1	406
3	Identification of loci governing eight agronomic traits using a <scp>GBS</scp> â€ <scp>GWAS</scp> approach and validation by <scp>QTL</scp> mapping in soya bean. Plant Biotechnology Journal, 2015, 13, 211-221.	4.1	340
4	Role of Silicon in Mitigation of Heavy Metal Stresses in Crop Plants. Plants, 2019, 8, 71.	1.6	256
5	Identification and functional characterization of silicon transporters in soybean using comparative genomics of major intrinsic proteins in Arabidopsis and rice. Plant Molecular Biology, 2013, 83, 303-315.	2.0	233
6	Integrating omic approaches for abiotic stress tolerance in soybean. Frontiers in Plant Science, 2014, 5, 244.	1.7	213
7	A precise spacing between the <scp>NPA</scp> domains of aquaporins is essential for silicon permeability in plants. Plant Journal, 2015, 83, 489-500.	2.8	191
8	Genome-Wide Distribution and Organization of Microsatellites in Plants: An Insight into Marker Development in Brachypodium. PLoS ONE, 2011, 6, e21298.	1.1	184
9	Soybean (Glycine max) SWEET gene family: insights through comparative genomics, transcriptome profiling and whole genome re-sequence analysis. BMC Genomics, 2015, 16, 520.	1.2	173
10	ldentification of major quantitative trait loci qSBR11-1 for sheath blight resistance in rice. Molecular Breeding, 2010, 25, 155-166.	1.0	131
11	Significance of silicon uptake, transport, and deposition in plants. Journal of Experimental Botany, 2020, 71, 6703-6718.	2.4	126
12	Computational Prediction of Effector Proteins in Fungi: Opportunities and Challenges. Frontiers in Plant Science, 2016, 7, 126.	1.7	118
13	Genome Editing in Plants: Exploration of Technological Advancements and Challenges. Cells, 2019, 8, 1386.	1.8	115
14	Genetic architecture of cyst nematode resistance revealed by genome-wide association study in soybean. BMC Genomics, 2015, 16, 593.	1.2	111
15	Expanding Omics Resources for Improvement of Soybean Seed Composition Traits. Frontiers in Plant Science, 2015, 6, 1021.	1.7	105
16	Association mapping of QTLs for sclerotinia stem rot resistance in a collection of soybean plant introductions using a genotyping by sequencing (GBS) approach. BMC Plant Biology, 2015, 15, 5.	1.6	98
17	Nitric oxide and hydrogen sulfide crosstalk during heavy metal stress in plants. Physiologia Plantarum, 2020, 168, 437-455.	2.6	94
18	Analysis of aquaporins in Brassicaceae species reveals high-level of conservation and dynamic role against biotic and abiotic stress in canola. Scientific Reports, 2017, 7, 2771.	1.6	84

#	Article	lF	Citations
19	Genome Editing in Cereals: Approaches, Applications and Challenges. International Journal of Molecular Sciences, 2020, 21, 4040.	1.8	82
20	Silicon protects soybean plants against Phytophthora sojae by interfering with effector-receptor expression. BMC Plant Biology, 2018, 18, 97.	1.6	80
21	New evidence defining the evolutionary path of aquaporins regulating silicon uptake in land plants. Journal of Experimental Botany, 2020, 71, 6775-6788.	2.4	78
22	Plant Aquaporins: Genome-Wide Identification, Transcriptomics, Proteomics, and Advanced Analytical Tools. Frontiers in Plant Science, 2016, 7, 1896.	1.7	76
23	Advances in Omics Approaches for Abiotic Stress Tolerance in Tomato. Biology, 2019, 8, 90.	1.3	68
24	Mutation Breeding in Tomato: Advances, Applicability and Challenges. Plants, 2019, 8, 128.	1.6	65
25	Recent advances in molecular marker techniques: Insight into QTL mapping, GWAS and genomic selection in plants. Journal of Crop Science and Biotechnology, 2015, 18, 293-308.	0.7	61
26	Comparative Transcriptomic Analysis of Virulence Factors in Leptosphaeria maculans during Compatible and Incompatible Interactions with Canola. Frontiers in Plant Science, 2016, 7, 1784.	1.7	60
27	Genomic resources in horticultural crops: Status, utility and challenges. Biotechnology Advances, 2011, 29, 199-209.	6.0	54
28	Silicon nanoparticles (SiNPs) in sustainable agriculture: major emphasis on the practicality, efficacy and concerns. Nanoscale Advances, 2021, 3, 4019-4028.	2.2	50
29	Effector Biology of Biotrophic Plant Fungal Pathogens: Current Advances and Future Prospects. Microbiological Research, 2020, 241, 126567.	2.5	46
30	Genome-wide Identification and Characterization of Heat Shock Protein Family Reveals Role in Development and Stress Conditions in Triticum aestivum L Scientific Reports, 2020, 10, 7858.	1.6	44
31	Mutagenesis Approaches and Their Role in Crop Improvement. Plants, 2019, 8, 467.	1.6	42
32	Identification of the aquaporin gene family in Cannabis sativa and evidence for the accumulation of silicon in its tissues. Plant Science, 2019, 287, 110167.	1.7	41
33	Stable predictive markers for Phytophthora sojae avirulence genes that impair infection of soybean uncovered by whole genome sequencing of 31 isolates. BMC Biology, 2018, 16, 80.	1.7	40
34	Functional Characterization of Novel Chitinase Genes Present in the Sheath Blight Resistance QTL: qSBR11-1 in Rice Line Tetep. Frontiers in Plant Science, 2016, 7, 244.	1.7	38
35	Silicon Uptake and Localisation in Date Palm (Phoenix dactylifera) – A Unique Association With Sclerenchyma. Frontiers in Plant Science, 2019, 10, 988.	1.7	37
36	Expanding Avenue of Fast Neutron Mediated Mutagenesis for Crop Improvement. Plants, 2019, 8, 164.	1.6	37

3

#	Article	IF	Citations
37	Molecular characterization and expression dynamics of MTP genes under various spatio-temporal stages and metal stress conditions in rice. PLoS ONE, 2019, 14, e0217360.	1.1	34
38	Unexplored nutritive potential of tomato to combat global malnutrition. Critical Reviews in Food Science and Nutrition, 2022, 62, 1003-1034.	5.4	34
39	Understanding the Dynamics of Blast Resistance in Rice-Magnaporthe oryzae Interactions. Journal of Fungi (Basel, Switzerland), 2022, 8, 584.	1.5	32
40	Identification and characterization of aquaporin genes in Arachis duranensis and Arachis ipaensis genomes, the diploid progenitors of peanut. BMC Genomics, 2019, 20, 222.	1.2	31
41	Applications and challenges for efficient exploration of omics interventions for the enhancement of nutritional quality in rice (<i>Oryza sativa</i> L.). Critical Reviews in Food Science and Nutrition, 2020, 60, 3304-3320.	5.4	29
42	Intron gain, a dominant evolutionary process supporting high levels of gene expression in rice. Journal of Plant Biochemistry and Biotechnology, 2016, 25, 142-146.	0.9	27
43	Role of silicon under contrasting biotic and abiotic stress conditions provides benefits for climate smart cropping. Environmental and Experimental Botany, 2021, 189, 104545.	2.0	27
44	Seed priming with melatonin: A promising approach to combat abiotic stress in plants. Plant Stress, 2022, 4, 100071.	2.7	25
45	Molecular mapping of black rot resistance locus <i><scp>X</scp>calbo</i> on chromosome 3 in <scp>I</scp> ndian cauliflower (<i><scp>B</scp>rassica oleracea</i> var. <i>botrytis</i> L.). Plant Breeding, 2014, 133, 268-274.	1.0	24
46	Dynamic role of aquaporin transport system under drought stress in plants. Environmental and Experimental Botany, 2021, 184, 104367.	2.0	24
47	Understanding Aquaporin Transport System in Eelgrass (Zostera marina L.), an Aquatic Plant Species. Frontiers in Plant Science, 2017, 8, 1334.	1.7	23
48	Targeting aquaporins to alleviate hazardous metal(loid)s imposed stress in plants. Journal of Hazardous Materials, 2021, 408, 124910.	6.5	22
49	Significance of solute specificity, expression, and gating mechanism of tonoplast intrinsic protein during development and stress response in plants. Physiologia Plantarum, 2021, 172, 258-274.	2.6	22
50	Role of silicon in elevating resistance against sheath blight and blast diseases in rice (Oryza sativa L.). Plant Physiology and Biochemistry, 2021, 166, 128-139.	2.8	22
51	Understanding the Role of the WRKY Gene Family under Stress Conditions in Pigeonpea (Cajanus Cajan) Tj ETQq1	1.0.78431	14 rgBT /O\ 20
52	Integrated QTL mapping, gene expression and nucleotide variation analyses to investigate complex quantitative traits: a case study with the soybean– <i>Phytophthora sojae</i> interaction. Plant Biotechnology Journal, 2020, 18, 1492-1494.	4.1	18
53	Omics advances and integrative approaches for the simultaneous improvement of seed oil and protein content in soybean (<i>Glycine max</i> L.). Critical Reviews in Plant Sciences, 2021, 40, 398-421.	2.7	17
54	Si permeability of a deficient Lsi1 aquaporin in tobacco can be enhanced through a conserved residue substitution. Plant Direct, 2019, 3, e00163.	0.8	16

#	Article	IF	Citations
55	Opportunity and challenges for nanotechnology application for genome editing in plants. , 2022, 1, 100001.		15
56	Spatio-temporal distribution of micronutrients in rice grains and its regulation. Critical Reviews in Biotechnology, 2020, 40, 490-507.	5.1	14
57	Dissecting the nutrient partitioning mechanism in rice grain using spatially resolved gene expression profiling. Journal of Experimental Botany, 2021, 72, 2212-2230.	2.4	13
58	Understanding aquaporin transport system, silicon and other metalloids uptake and deposition in bottle gourd (Lagenaria siceraria). Journal of Hazardous Materials, 2021, 409, 124598.	6.5	13
59	Discriminant haplotypes of avirulence genes of <i>Phytophthora sojae</i> lead to a molecular assay to predict phenotypes. Molecular Plant Pathology, 2020, 21, 318-329.	2.0	12
60	Soybean transporter database: A comprehensive database for identification and exploration of natural variants in soybean transporter genes. Physiologia Plantarum, 2021, 171, 756-770.	2.6	12
61	Molecular mapping of quantitative trait loci for flag leaf length and other agronomic traits in rice <i>(Oryza sativa)</i>). Cereal Research Communications, 2012, 40, 362-372.	0.8	11
62	Understanding aquaporin transport system in highly stress-tolerant and medicinal plant species Jujube (Ziziphus jujuba Mill.). Journal of Biotechnology, 2020, 324, 103-111.	1.9	11
63	Reference gene identification for gene expression analysis in rice under different metal stress. Journal of Biotechnology, 2021, 332, 83-93.	1.9	11
64	Understanding aquaporin regulation defining silicon uptake and role in arsenic, antimony and germanium stress in pigeonpea (Cajanus cajan). Environmental Pollution, 2022, 294, 118606.	3.7	11
65	Progress Toward Development of Climate-Smart Flax: A Perspective on Omics-Assisted Breeding. , 2019, , 239-274.		10
66	Identification of genomic loci conferring broad-spectrum resistance to multiple nematode species in exotic soybean accession PI 567305. Theoretical and Applied Genetics, 2021, 134, 3379-3395.	1.8	10
67	Analysis of Genetic Diversity in Earthworms using DNA Markers. Zoological Science, 2011, 28, 25.	0.3	9
68	In defence of the selective transport and role of silicon in plants. New Phytologist, 2019, 223, 514-516.	3.5	9
69	Evolutionary Understanding of Aquaporin Transport System in the Basal Eudicot Model Species Aquilegia coerulea. Plants, 2020, 9, 799.	1.6	9
70	Speed Breeding Opportunities and Challenges for Crop Improvement. Journal of Plant Growth Regulation, 2023, 42, 46-59.	2.8	9
71	Understanding the Effect of Structural Diversity in WRKY Transcription Factors on DNA Binding Efficiency through Molecular Dynamics Simulation. Biology, 2019, 8, 83.	1.3	8
72	Identification and molecular characterization of rice bran-specific lipases. Plant Cell Reports, 2021, 40, 1215-1228.	2.8	8

#	Article	IF	CITATIONS
73	Whole Genome Re-sequencing of Soybean Accession EC241780 Providing Genomic Landscape of Candidate Genes Involved in Rust Resistance. Current Genomics, 2020, 21, 504-511.	0.7	8
74	Approaches, Applicability, and Challenges for Development of Climate-Smart Soybean., 2019, , 1-74.		7
75	Understanding the role of SWEET genes in fruit development and abiotic stress in pomegranate (Punica granatum L.). Molecular Biology Reports, 2022, 49, 1329-1339.	1.0	6
76	Decoding the genome of superior chapatti quality Indian wheat variety  C 306' unravelled novel genomic variants for chapatti and nutrition quality related genes. Genomics, 2021, 113, 1919-1929.	1.3	5
77	Identification of aquaporins and deciphering their role under salinity stress in pomegranate (Punica) Tj ETQq $1\ 1\ 0$	0.784314	rgBT /Overloo
78	Evolutionary Understanding of Metacaspase Genes in Cultivated and Wild Oryza Species and Its Role in Disease Resistance Mechanism in Rice. Genes, 2020, 11, 1412.	1.0	4
79	Genotyping-by-sequencing based QTL mapping identified a novel waxy allele contributing to high amylose starch in wheat. Euphytica, 2021, 217, 1.	0.6	4
80	Evolution of Bcl-2 Anthogenes (BAG) as the Regulators of Cell Death in Wild and Cultivated Oryza Species. Journal of Plant Growth Regulation, 0 , 1 .	2.8	3
81	Deciphering Haplotypic Variation and Gene Expression Dynamics Associated with Nutritional and Cooking Quality in Rice. Cells, 2022, 11, 1144.	1.8	1
82	Development of chloroplast microsatellite markers in Capsicum: Insight into evolution of Bhut Jolokia - a clad of ghost chilli landraces. Indian Journal of Genetics and Plant Breeding, 2021, 81, 93-100.	0.2	0
83	Fungicidal Interference during Infection Related Developmental Stages in Magnaporthe grisea. International Journal of Phytopathology, 2012, 1, 49-55.	0.1	O
84	Global Perspectives on Agriculture: Food Security and Nutrition. , 2020, , 1-27.		0
85	Understanding aquaporins regulation and silicon uptake in carrot (Daucus carota). Journal of Plant Biochemistry and Biotechnology, 0, , .	0.9	O