
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9477515/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	A nuclear factor 1 binding site mediates the transcriptional activation of a type I collagen promoter by transforming growth factor-β. Cell, 1988, 52, 405-414.	13.5	634
2	Follicle-Stimulating Hormone Induction of Steel Factor (SLF) mRNA in Mouse Sertoli Cells and Stimulation of DNA Synthesis in Spermatogonia by Soluble SLF. Developmental Biology, 1993, 155, 68-74.	0.9	211
3	Developmental expression of BMP4/ALK3/SMAD5 signaling pathway in the mouse testis: a potential role of BMP4 in spermatogonia differentiation. Journal of Cell Science, 2003, 116, 3363-3372.	1.2	196
4	Repression of kit Expression by Plzf in Germ Cells. Molecular and Cellular Biology, 2007, 27, 6770-6781.	1.1	178
5	Opposing effects of retinoic acid and FGF9 on <i>Nanos2</i> expression and meiotic entry of mouse germ cells. Journal of Cell Science, 2010, 123, 871-880.	1.2	138
6	Transforming Growth Factor β: Biochemistry and Roles in Embryogenesis, Tissue Repair and Remodeling, and Carcinogenesis. , 1988, 44, 157-197.		134
7	Expression of the mRNA for the ligand of C-kit in mouse sertoli cells. Biochemical and Biophysical Research Communications, 1991, 176, 910-914.	1.0	124
8	Tr-kit-induced resumption of the cell cycle in mouse eggs requires activation of a Src-like kinase. EMBO Journal, 2002, 21, 5386-5395.	3.5	122
9	Signaling through Extracellular Signal-regulated Kinase Is Required for Spermatogonial Proliferative Response to Stem Cell Factor. Journal of Biological Chemistry, 2001, 276, 40225-40233.	1.6	114
10	Involvement of Phospholipase Cγ1 in Mouse Egg Activation Induced by a Truncated Form of the C-kit Tyrosine Kinase Present in Spermatozoa. Journal of Cell Biology, 1998, 142, 1063-1074.	2.3	109
11	Essential Role of Sox2 for the Establishment and Maintenance of the Germ Cell Line. Stem Cells, 2013, 31, 1408-1421.	1.4	106
12	ATRA and KL promote differentiation toward the meiotic program of male germ cells Cell Cycle, 2008, 7, 3878-3888.	1.3	104
13	A novel c-kit transcript, potentially encoding a truncated receptor, originates within a kit gene intron in mouse spermatids. Developmental Biology, 1992, 152, 203-207.	0.9	103
14	Phosphorylation of High-Mobility Group Protein A2 by Nek2 Kinase during the First Meiotic Division in Mouse Spermatocytes. Molecular Biology of the Cell, 2004, 15, 1224-1232.	0.9	97
15	Gynaecomastia in men with chronic myeloid leukaemia after imatinib. Lancet, The, 2003, 361, 1954-1956.	6.3	88
16	Direct evidence that the mouse sex-determining geneSry is expressed in the somatic cells of male fetal gonads and in the germ cell line in the adult testis. Molecular Reproduction and Development, 1993, 34, 369-373.	1.0	82
17	SOHLH1 and SOHLH2 control Kit expression during postnatal male germ cell development Journal of Cell Science, 2012, 125, 1455-64.	1.2	73
18	Activation of the Mitogen-activated Protein Kinase ERK1 during Meiotic Progression of Mouse Pachytene Spermatocytes. Journal of Biological Chemistry, 1999, 274, 33571-33579.	1.6	72

#	Article	IF	CITATIONS
19	The MAPK pathway triggers activation of Nek2 during chromosome condensation in mouse spermatocytes. Development (Cambridge), 2002, 129, 1715-1727.	1.2	72
20	Expression of a Truncated Form of the c-Kit Tyrosine Kinase Receptor and Activation of Src Kinase in Human Prostatic Cancer. American Journal of Pathology, 2004, 164, 1243-1251.	1.9	70
21	Paracrine Mechanisms Involved in the Control of Early Stages of Mammalian Spermatogenesis. Frontiers in Endocrinology, 2013, 4, 181.	1.5	58
22	tr-kit promotes the formation of a multimolecular complex composed by Fyn, PLCγ1 and Sam68. Oncogene, 2003, 22, 8707-8715.	2.6	52
23	RNF4 Is a Growth Inhibitor Expressed in Germ Cells but Not in Human Testicular Tumors. American Journal of Pathology, 2001, 159, 1225-1230.	1.9	49
24	An SRY-negative XX male with Huriez syndrome. Clinical Genetics, 2001, 57, 61-66.	1.0	46
25	Expression of the proto-oncogene c-KIT in normal and tumor tissues from colorectal carcinoma patients. International Journal of Colorectal Disease, 2004, 19, 545-553.	1.0	45
26	Transcriptome analysis of differentiating spermatogonia stimulated with kit ligand. Gene Expression Patterns, 2008, 8, 58-70.	0.3	42
27	Expression of a truncated form of KIT tyrosine kinase in human spermatozoa correlates with sperm DNA integrity. Human Reproduction, 2010, 25, 2188-2202.	0.4	42
28	Analysis of the gene expression profile of mouse male meiotic germ cells. Gene Expression Patterns, 2004, 4, 267-281.	0.3	41
29	Identification of a Promoter Region Generating Sry Circular Transcripts Both in Germ Cells from Male Adult Mice and in Male Mouse Embryonal Gonads1. Biology of Reproduction, 1997, 57, 1128-1135.	1.2	36
30	Functional interaction between p90Rsk2 and Emi1 contributes to the metaphase arrest of mouse ocytes. EMBO Journal, 2004, 23, 4649-4659.	3.5	36
31	Type 5 phosphodiesterase regulates glioblastoma multiforme aggressiveness and clinical outcome. Oncotarget, 2017, 8, 13223-13239.	0.8	30
32	Cyclic nucleotide phosphodiesterase in developing rat testis identification of somatic and germ-cell forms. Molecular and Cellular Endocrinology, 1982, 28, 37-53.	1.6	28
33	Cannabinoid Receptors Signaling in the Development, Epigenetics, and Tumours of Male Germ Cells. International Journal of Molecular Sciences, 2020, 21, 25.	1.8	26
34	Microgravity Promotes Differentiation and Meiotic Entry of Postnatal Mouse Male Germ Cells. PLoS ONE, 2010, 5, e9064.	1.1	26
35	The MAPK pathway triggers activation of Nek2 during chromosome condensation in mouse spermatocytes. Development (Cambridge), 2002, 129, 1715-27.	1.2	26
36	Overactive type 2 cannabinoid receptor induces meiosis in fetal gonads and impairs ovarian reserve. Cell Death and Disease, 2017, 8, e3085-e3085.	2.7	25

#	Article	IF	CITATIONS
37	Molecular Genetics of Male Infertility: Stem Cell Factor/c-kit System. American Journal of Reproductive Immunology, 2002, 48, 27-33.	1.2	23
38	Targeted JAM-C deletion in germ cells by Spo11-controlled Cre recombinase. Journal of Cell Science, 2011, 124, 91-99.	1.2	22
39	Transcriptional control of KIT gene expression during germ cell development. International Journal of Developmental Biology, 2013, 57, 179-184.	0.3	22
40	A surge of late-occurring meiotic double-strand breaks rescues synapsis abnormalities in spermatocytes of mice with hypomorphic expression of SPO11. Chromosoma, 2016, 125, 189-203.	1.0	22
41	Differential Contribution of the MTOR and MNK Pathways to the Regulation of mRNA Translation in Meiotic and Postmeiotic Mouse Male Germ Cells1. Biology of Reproduction, 2010, 83, 607-615.	1.2	21
42	Follicle-Stimulating Hormone and Cyclic AMP Induce Transcription from the Human Urokinase Promoter in Primary Cultures of Mouse Sertoli Cells. Molecular Endocrinology, 1990, 4, 940-946.	3.7	20
43	Cyclic Adenosine Monophosphate (cAMP) Stimulation of the Kit Ligand Promoter in Sertoli Cells Requires an Sp1-Binding Region, a Canonical TATA Box, and a cAMP-Induced Factor Binding to an Immediately Downstream GC-Rich Element1. Biology of Reproduction, 2003, 69, 1979-1988.	1.2	20
44	Transcriptional Mechanisms Controlling Types I and III Collagen Genes. Annals of the New York Academy of Sciences, 1990, 580, 88-96.	1.8	19
45	Prolin-rich tyrosine kinase 2 (PYK2) expression and localization in mouse testis. Molecular Reproduction and Development, 2003, 65, 330-335.	1.0	16
46	Testicular Germ Cell Tumors Acquire Cisplatin Resistance by Rebalancing the Usage of DNA Repair Pathways. Cancers, 2021, 13, 787.	1.7	15
47	Formation of a type I collagen RNA dimer by intermolecular base-pairing of a conserved sequence around the translation initiation site. Nucleic Acids Research, 1987, 15, 8935-8956.	6.5	14
48	The Italian law on body donation: A position paper of the Italian College of Anatomists. Annals of Anatomy, 2021, 238, 151761.	1.0	13
49	Purification and characterization of a low-Km 3′: 5′-cyclic adenosine phosphodiesterase from post-meiotic male mouse germ cells. BBA - Proteins and Proteomics, 1992, 1121, 178-182.	2.1	10
50	Sempervirine inhibits RNA polymerase I transcription independently from p53 in tumor cells. Cell Death Discovery, 2020, 6, 111.	2.0	10
51	Regulation of Kit Expression in Early Mouse Embryos and ES Cells. Stem Cells, 2019, 37, 332-344.	1.4	9
52	The same sequence mediates activation of the human urokinase promoter by cAMP in mouse Sertoli cells and by SV40 large T antigen in COS cells. Molecular and Cellular Endocrinology, 1996, 117, 167-173.	1.6	8
53	Non-Coding RNAs and Splicing Activity in Testicular Germ Cell Tumors. Life, 2021, 11, 736.	1.1	6
54	MAPK activation drives male and female mouse teratocarcinomas from late primordial germ cells. Journal of Cell Science, 2022, 135, .	1.2	6

#	Article	IF	CITATIONS
55	Targeted JAM-C deletion in germ cells by Spo11-controlled Cre recombinase. Development (Cambridge), 2011, 138, e0208-e0208.	1.2	0
56	SOHLH1 and SOHLH2 control Kit expression during postnatal male germ cell development. Development (Cambridge), 2012, 139, e1106-e1106.	1.2	0
57	UV and genotoxic stress induce ATR relocalization in mouse spermatocytes. International Journal of Developmental Biology, 2013, 57, 281-287.	0.3	0
58	Alternative Forms and Functions of the c-kit Receptor and Its Ligand During Spermatogenesis. , 1996, , 99-110.		0