
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9477306/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                | IF   | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 1  | Regulation of DNA repair throughout the cell cycle. Nature Reviews Molecular Cell Biology, 2008, 9, 297-308.                                                                           | 16.1 | 1,028     |
| 2  | Fork Reversal and ssDNA Accumulation at Stalled Replication Forks Owing to Checkpoint Defects.<br>Science, 2002, 297, 599-602.                                                         | 6.0  | 756       |
| 3  | The DNA replication checkpoint response stabilizes stalled replication forks. Nature, 2001, 412, 557-561.                                                                              | 13.7 | 693       |
| 4  | Maintaining genome stability at the replication fork. Nature Reviews Molecular Cell Biology, 2010, 11, 208-219.                                                                        | 16.1 | 690       |
| 5  | DNA end resection, homologous recombination and DNA damage checkpoint activation require CDK1.<br>Nature, 2004, 431, 1011-1017.                                                        | 13.7 | 641       |
| 6  | Srs2 and Sgs1–Top3 Suppress Crossovers during Double-Strand Break Repair in Yeast. Cell, 2003, 115,<br>401-411.                                                                        | 13.5 | 539       |
| 7  | Multiple Mechanisms Control Chromosome Integrity after Replication Fork Uncoupling and Restart at<br>Irreparable UV Lesions. Molecular Cell, 2006, 21, 15-27.                          | 4.5  | 515       |
| 8  | HDACs link the DNA damage response, processing of double-strand breaks and autophagy. Nature, 2011, 471, 74-79.                                                                        | 13.7 | 368       |
| 9  | Activation of Rad53 kinase in response to DNA damage and its effect in modulating phosphorylation of the lagging strand DNA polymerase. EMBO Journal, 1999, 18, 6561-6572.             | 3.5  | 354       |
| 10 | Recovery from Checkpoint-Mediated Arrest after Repair of a Double-Strand Break Requires Srs2<br>Helicase. Molecular Cell, 2002, 10, 373-385.                                           | 4.5  | 310       |
| 11 | Spk1/Rad53 is regulated by Mec1-dependent protein phosphorylation in DNA replication and damage checkpoint pathways Genes and Development, 1996, 10, 395-406.                          | 2.7  | 295       |
| 12 | Rad51-dependent DNA structures accumulate at damaged replication forks in sgs1 mutants defective in the yeast ortholog of BLM RecQ helicase. Genes and Development, 2005, 19, 339-350. | 2.7  | 287       |
| 13 | Regulation of Saccharomyces Rad53 Checkpoint Kinase during Adaptation from DNA Damage–Induced<br>G2/M Arrest. Molecular Cell, 2001, 7, 293-300.                                        | 4.5  | 276       |
| 14 | G-quadruplex-induced instability during leading-strand replication. EMBO Journal, 2011, 30, 4033-4046.                                                                                 | 3.5  | 269       |
| 15 | Ubc9- and Mms21-Mediated Sumoylation Counteracts Recombinogenic Events atÂDamaged Replication Forks. Cell, 2006, 127, 509-522.                                                         | 13.5 | 266       |
| 16 | SUMOylation regulates Rad18-mediated template switch. Nature, 2008, 456, 915-920.                                                                                                      | 13.7 | 238       |
| 17 | Exo1 Processes Stalled Replication Forks and Counteracts Fork Reversal in Checkpoint-Defective Cells.<br>Molecular Cell, 2005, 17, 153-159.                                            | 4.5  | 234       |
| 18 | The DNA damage response during DNA replication. Current Opinion in Cell Biology, 2005, 17, 568-575.                                                                                    | 2.6  | 217       |

| #  | Article                                                                                                                                                                                              | IF   | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 19 | Combination of Hypoglycemia and Metformin Impairs Tumor Metabolic Plasticity and Growth by<br>Modulating the PP2A-GSK3β-MCL-1 Axis. Cancer Cell, 2019, 35, 798-815.e5.                               | 7.7  | 212       |
| 20 | ATM and ATR signaling at a glance. Journal of Cell Science, 2015, 128, 4255-62.                                                                                                                      | 1.2  | 207       |
| 21 | The Replication Checkpoint Protects Fork Stability by Releasing Transcribed Genes from Nuclear Pores.<br>Cell, 2011, 146, 233-246.                                                                   | 13.5 | 204       |
| 22 | Senataxin Associates with Replication Forks to Protect Fork Integrity across RNA-Polymerase-II-Transcribed Genes. Cell, 2012, 151, 835-846.                                                          | 13.5 | 204       |
| 23 | The checkpoint response to replication stress. DNA Repair, 2009, 8, 1038-1046.                                                                                                                       | 1.3  | 191       |
| 24 | Genome-wide function of THO/TREX in active genes prevents R-loop-dependent replication obstacles.<br>EMBO Journal, 2011, 30, 3106-3119.                                                              | 3.5  | 191       |
| 25 | ATR Mediates a Checkpoint at the Nuclear Envelope in Response to Mechanical Stress. Cell, 2014, 158, 633-646.                                                                                        | 13.5 | 179       |
| 26 | GCD2, a translational repressor of the GCN4 gene, has a general function in the initiation of protein synthesis in Saccharomyces cerevisiae Molecular and Cellular Biology, 1991, 11, 3203-3216.     | 1.1  | 175       |
| 27 | Unique pattern of ET-743 activity in different cellular systems with defined deficiencies in DNA-repair pathways. International Journal of Cancer, 2001, 92, 583-588.                                | 2.3  | 155       |
| 28 | Preventing Replication Stress to Maintain Genome Stability: Resolving Conflicts between Replication and Transcription. Molecular Cell, 2012, 45, 710-718.                                            | 4.5  | 152       |
| 29 | Checkpoint-mediated control of replisome–fork association and signalling in response to replication pausing. Oncogene, 2004, 23, 1206-1213.                                                          | 2.6  | 147       |
| 30 | DNA damage checkpoint in budding yeast. EMBO Journal, 1998, 17, 5525-5528.                                                                                                                           | 3.5  | 145       |
| 31 | Targeting Cancer Metabolism: Dietary and Pharmacologic Interventions. Cancer Discovery, 2016, 6, 1315-1333.                                                                                          | 7.7  | 137       |
| 32 | Top1- and Top2-mediated topological transitions at replication forks ensure fork progression and stability and prevent DNA damage checkpoint activation. Genes and Development, 2007, 21, 1921-1936. | 2.7  | 134       |
| 33 | Complex formation by positive and negative translational regulators of GCN4 Molecular and Cellular Biology, 1991, 11, 3217-3228.                                                                     | 1.1  | 131       |
| 34 | Replication Termination at Eukaryotic Chromosomes Is Mediated by Top2 and Occurs at Genomic Loci<br>Containing Pausing Elements. Molecular Cell, 2010, 39, 595-605.                                  | 4.5  | 131       |
| 35 | Visualization of recombination-mediated damage bypass by template switching. Nature Structural and Molecular Biology, 2014, 21, 884-892.                                                             | 3.6  | 124       |
| 36 | Fasting-Mimicking Diet Is Safe and Reshapes Metabolism and Antitumor Immunity in Patients with<br>Cancer. Cancer Discovery, 2022, 12, 90-107.                                                        | 7.7  | 124       |

| #  | Article                                                                                                                                                                                                       | IF   | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 37 | DNA damage checkpoints and DNA replication controls in Saccharomyces cerevisiae. Mutation<br>Research - Fundamental and Molecular Mechanisms of Mutagenesis, 2000, 451, 187-196.                              | 0.4  | 110       |
| 38 | Replicon Dynamics, Dormant Origin Firing, and Terminal Fork Integrity after Double-Strand Break<br>Formation. Cell, 2009, 137, 247-258.                                                                       | 13.5 | 110       |
| 39 | Branch Migrating Sister Chromatid Junctions Form at Replication Origins through<br>Rad51/Rad52-Independent Mechanisms. Molecular Cell, 2003, 12, 1499-1510.                                                   | 4.5  | 107       |
| 40 | A role for DNA primase in coupling DNA replication to DNA damage response. EMBO Journal, 1997, 16, 639-650.                                                                                                   | 3.5  | 106       |
| 41 | The Rad53 signal transduction pathway: Replication fork stabilization, DNA repair, and adaptation.<br>Experimental Cell Research, 2006, 312, 2654-2659.                                                       | 1.2  | 106       |
| 42 | Interplay of replication checkpoints and repair proteins at stalled replication forks. DNA Repair, 2007, 6, 994-1003.                                                                                         | 1.3  | 105       |
| 43 | Genome-Organizing Factors Top2 and Hmo1 Prevent Chromosome Fragility at Sites of S phase<br>Transcription. Cell, 2009, 138, 870-884.                                                                          | 13.5 | 101       |
| 44 | Role of homologous recombination in trabectedin-induced DNA damage. European Journal of Cancer, 2008, 44, 609-618.                                                                                            | 1.3  | 95        |
| 45 | The <i>Saccharomyces cerevisiae</i> Esc2 and Smc5-6 Proteins Promote Sister Chromatid<br>Junction-mediated Intra-S Repair. Molecular Biology of the Cell, 2009, 20, 1671-1682.                                | 0.9  | 92        |
| 46 | YAP/TAZ activity in stromal cells prevents ageing by controlling cGAS–STING. Nature, 2022, 607, 790-798.                                                                                                      | 13.7 | 89        |
| 47 | Srs2 and Sgs1 DNA Helicases Associate with Mre11 in Different Subcomplexes following Checkpoint<br>Activation and CDK1-Mediated Srs2 Phosphorylation. Molecular and Cellular Biology, 2005, 25,<br>5738-5751. | 1.1  | 80        |
| 48 | Signal Transduction: How Rad53 Kinase Is Activated. Current Biology, 2005, 15, R769-R771.                                                                                                                     | 1.8  | 76        |
| 49 | The Saccharomyces recombination protein Tid1p is required for adaptation from G2/M arrest induced by a double-strand break. Current Biology, 2001, 11, 1053-1057.                                             | 1.8  | 73        |
| 50 | A single essential gene, PRI2, encodes the large subunit of DNA primase in Saccharomyces cerevisiae<br>Molecular and Cellular Biology, 1989, 9, 3081-3087.                                                    | 1.1  | 72        |
| 51 | A meiosis-specific protein kinase, Ime2, is required for the correct timing of DNA replication and for spore formation in yeast meiosis. Molecular Genetics and Genomics, 1996, 253, 278-288.                 | 2.4  | 68        |
| 52 | Evidence for a Cdc6p-independent mitotic resetting event involving DNA polymerase α. EMBO Journal,<br>1998, 17, 4139-4146.                                                                                    | 3.5  | 68        |
| 53 | DNA damage causes rapid accumulation of phosphoinositides for ATRÂsignaling. Nature<br>Communications, 2017, 8, 2118.                                                                                         | 5.8  | 66        |
| 54 | Beclin 1 restrains tumorigenesis through Mcl-1 destabilization in an autophagy-independent reciprocal manner. Nature Communications, 2014, 5, 5637.                                                           | 5.8  | 65        |

| #  | Article                                                                                                                                                                                                                                                              | IF   | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 55 | Sgs1 function in the repair of DNA replication intermediates is separable from its role in homologous recombinational repair. EMBO Journal, 2009, 28, 915-925.                                                                                                       | 3.5  | 60        |
| 56 | ATR is essential for preservation of cell mechanics and nuclear integrity during interstitial migration.<br>Nature Communications, 2020, 11, 4828.                                                                                                                   | 5.8  | 60        |
| 57 | Guanine nucleotide exchange factor for eukaryotic translation initiation factor 2 in Saccharomyces cerevisiae: interactions between the essential subunits GCD2, GCD6, and GCD7 and the regulatory subunit GCN3 Molecular and Cellular Biology, 1993, 13, 4618-4631. | 1.1  | 56        |
| 58 | The DNA PolymerasePrimase Complex: Multiple Functions and Interactions. Scientific World Journal, The, 2003, 3, 21-33.                                                                                                                                               | 0.8  | 56        |
| 59 | Rad53-Mediated Regulation of Rrm3 and Pif1 DNA Helicases Contributes to Prevention of Aberrant Fork<br>Transitions under Replication Stress. Cell Reports, 2015, 13, 80-92.                                                                                          | 2.9  | 53        |
| 60 | Negative supercoil at gene boundaries modulates gene topology. Nature, 2020, 577, 701-705.                                                                                                                                                                           | 13.7 | 53        |
| 61 | Berberine in the treatment of metabolism-related chronic diseases: A drug cloud (dCloud) effect to target multifactorial disorders. , 2020, 209, 107496.                                                                                                             |      | 52        |
| 62 | De novo synthesis of budding yeast DNA polymerase alpha and POL1 transcription at the G1/S boundary are not required for entrance into S phase Proceedings of the National Academy of Sciences of the United States of America, 1993, 90, 10519-10523.               | 3.3  | 51        |
| 63 | Yeast Rad52 and Rad51 Recombination Proteins Define a Second Pathway of DNA Damage Assessment in Response to a Single Double-Strand Break. Molecular and Cellular Biology, 2003, 23, 8913-8923.                                                                      | 1.1  | 50        |
| 64 | Template Switching: From Replication Fork Repair to Genome Rearrangements. Cell, 2007, 131, 1228-1230.                                                                                                                                                               | 13.5 | 45        |
| 65 | Acetylation: A Novel Link between Double-Strand Break Repair and Autophagy. Cancer Research, 2012, 72, 1332-1335.                                                                                                                                                    | 0.4  | 43        |
| 66 | RecQ helicases queuing with Srs2 to disrupt Rad51 filaments and suppress recombination. Genes and Development, 2007, 21, 3019-3026.                                                                                                                                  | 2.7  | 42        |
| 67 | PP2A Controls Genome Integrity by Integrating Nutrient-Sensing and Metabolic Pathways with the DNA<br>Damage Response. Molecular Cell, 2017, 67, 266-281.e4.                                                                                                         | 4.5  | 42        |
| 68 | Major Roles for Pyrimidine Dimers, Nucleotide Excision Repair, and ATR in the Alternative Splicing Response to UV Irradiation. Cell Reports, 2017, 18, 2868-2879.                                                                                                    | 2.9  | 41        |
| 69 | Methods to Study Replication Fork Collapse in Budding Yeast. Methods in Enzymology, 2006, 409, 442-462.                                                                                                                                                              | 0.4  | 37        |
| 70 | High molecular weight immunoreactive basic fibroblast growth factor-like proteins in rat pituitary and brain. Neuroscience Letters, 1988, 90, 308-313.                                                                                                               | 1.0  | 34        |
| 71 | A lethal combination for cancer cells: Synthetic lethality screenings for drug discovery. European<br>Journal of Cancer, 2010, 46, 2889-2895.                                                                                                                        | 1.3  | 33        |
| 72 | Preserving the genome by regulating chromatin association with the nuclear envelope. Trends in Cell<br>Biology, 2012, 22, 465-473.                                                                                                                                   | 3.6  | 33        |

| #  | Article                                                                                                                                                                                           | IF  | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 73 | Molecular Pathways: Old Drugs Define New Pathways: Non-Histone Acetylation at the Crossroads of the DNA Damage Response and Autophagy. Clinical Cancer Research, 2012, 18, 2436-2442.             | 3.2 | 33        |
| 74 | ATR-mediated regulation of nuclear and cellular plasticity. DNA Repair, 2016, 44, 143-150.                                                                                                        | 1.3 | 33        |
| 75 | Dormant origins and fork protection mechanisms rescue sister forks arrested by transcription.<br>Nucleic Acids Research, 2018, 46, 1227-1239.                                                     | 6.5 | 32        |
| 76 | Dna2 processes behind the fork long ssDNA flaps generated by Pif1 and replication-dependent strand displacement. Nature Communications, 2018, 9, 4830.                                            | 5.8 | 28        |
| 77 | Phosphorylation of the DNA Polymerase -Primase B Subunit Is Dependent on Its Association with the p180 Polypeptide. Journal of Biological Chemistry, 1996, 271, 8661-8666.                        | 1.6 | 26        |
| 78 | Nuclear Envelope and Chromatin, Lock and Key of Genome Integrity. International Review of Cell and<br>Molecular Biology, 2015, 317, 267-330.                                                      | 1.6 | 20        |
| 79 | Impact of systemic and tumor lipid metabolism on everolimus efficacy in advanced pancreatic neuroendocrine tumors (pNETs). International Journal of Cancer, 2019, 144, 1704-1712.                 | 2.3 | 20        |
| 80 | The human nucleoporin Tpr protects cells from RNA-mediated replication stress. Nature Communications, 2021, 12, 3937.                                                                             | 5.8 | 20        |
| 81 | Mechanism of initiation of in vitro DNA synthesis by the immunopurified complex between yeast DNA polymerase I and DNA primase. FEBS Journal, 1986, 161, 435-440.                                 | 0.2 | 19        |
| 82 | Characterization of the BUD31 gene of Saccharomyces cerevisiae. Biochemical and Biophysical Research Communications, 2004, 320, 1342-1350.                                                        | 1.0 | 18        |
| 83 | The yeast DNA polymerase-primase complex: Genes and proteins. Biochimica Et Biophysica Acta Gene<br>Regulatory Mechanisms, 1988, 951, 268-273.                                                    | 2.4 | 16        |
| 84 | ChIP-on-Chip Analysis of DNA Topoisomerases. Methods in Molecular Biology, 2009, 582, 103-118.                                                                                                    | 0.4 | 15        |
| 85 | The Rad53CHK1/CHK2-Spt21NPAT and Tel1ATM axes couple glucose tolerance to histone dosage and subtelomeric silencing. Nature Communications, 2020, 11, 4154.                                       | 5.8 | 14        |
| 86 | A dominant-negative MEC3 mutant uncovers new functions for the Rad17 complex and Tel1.<br>Proceedings of the National Academy of Sciences of the United States of America, 2002, 99, 12997-13002. | 3.3 | 13        |
| 87 | Palmdelphin Regulates Nuclear Resilience to Mechanical Stress in the Endothelium. Circulation, 2021, 144, 1629-1645.                                                                              | 1.6 | 13        |
| 88 | Mechanisms Controlling the Integrity of Replicating Chromosomes in Budding Yeast. Cell Cycle, 2003, 2, 563-566.                                                                                   | 1.3 | 12        |
| 89 | Coordinating Replication with Transcription. Advances in Experimental Medicine and Biology, 2017, 1042, 455-487.                                                                                  | 0.8 | 12        |
| 90 | Leaping forks at inverted repeats: Figure 1 Genes and Development, 2010, 24, 5-9.                                                                                                                 | 2.7 | 11        |

| #   | Article                                                                                                                                                                                           | IF   | CITATIONS |
|-----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 91  | Dna2 Offers Support for Stalled Forks. Cell, 2012, 149, 1181-1183.                                                                                                                                | 13.5 | 10        |
| 92  | The double life of Holliday junctions. Cell Research, 2010, 20, 611-613.                                                                                                                          | 5.7  | 9         |
| 93  | A Mad2-Mediated Translational Regulatory Mechanism Promoting S-Phase Cyclin Synthesis Controls<br>Origin Firing and Survival to Replication Stress. Molecular Cell, 2018, 70, 628-638.e5.         | 4.5  | 9         |
| 94  | Golgi Feels DNA's Pain. Cell, 2014, 156, 392-393.                                                                                                                                                 | 13.5 | 8         |
| 95  | Cohesion by topology: sister chromatids interlocked by DNA: Figure 1 Genes and Development, 2008, 22, 2297-2301.                                                                                  | 2.7  | 7         |
| 96  | Endosomal trafficking and DNA damage checkpoint kinases dictate survival to replication stress by regulating amino acid uptake and protein synthesis. Developmental Cell, 2021, 56, 2607-2622.e6. | 3.1  | 6         |
| 97  | Initiation of DNA Replication. Cell, 2004, 116, 3-4.                                                                                                                                              | 13.5 | 5         |
| 98  | Recombination at Collapsed Replication Forks: the Payoff for Survival. Molecular Cell, 2005, 18, 614-615.                                                                                         | 4.5  | 5         |
| 99  | A rapid method to visualize human mitochondrial DNA replication through rotary shadowing and transmission electron microscopy. Nucleic Acids Research, 2021, 49, e121-e121.                       | 6.5  | 5         |
| 100 | An Error-Prone Polymerase in the Fight against Cancer. Cell, 2019, 176, 1241-1243.                                                                                                                | 13.5 | 4         |
| 101 | Disruptive influence. Nature, 2003, 423, 234-235.                                                                                                                                                 | 13.7 | 3         |
| 102 | The transcription factor PREP1(PKNOX1) regulates nuclear stiffness, the expression of LINC complex proteins and mechanotransduction. Communications Biology, 2022, 5, 456.                        | 2.0  | 3         |
| 103 | A model of DNA damage response activation at stalled replication forks by SPRTN. Nature Communications, 2019, 10, 5671.                                                                           | 5.8  | 2         |
| 104 | Budding Yeast DNA Damage Checkpoint: A Signal Transduction-Mediated Surveillance System. , 2003, ,<br>197-202.                                                                                    |      | 1         |
| 105 | Vps30/Atg6/BECN1 at the crossroads between cell metabolism and DNA damage response. Autophagy, 2022, 18, 1202-1204.                                                                               | 4.3  | 1         |
| 106 | Sometimes size does matter. European Journal of Cancer, 2003, 39, 1337-1338.                                                                                                                      | 1.3  | 0         |
| 107 | Replication forks and replication checkpoints in repair. , 2006, , 201-219.                                                                                                                       |      | 0         |
| 108 | Dangerous liaisons: MYCN meets condensins. Cell Cycle, 2014, 13, 1225-1226.                                                                                                                       | 1.3  | 0         |

| #   | Article                                                                                                  | IF  | CITATIONS |
|-----|----------------------------------------------------------------------------------------------------------|-----|-----------|
| 109 | Ultrastructure of fibroblasts from patients with progeria. Ultrastructural Pathology, 2017, 41, 108-109. | 0.4 | 0         |
| 110 | Ubiquitilated Fanconi ID complex embraces DNA. Cell Research, 2020, 30, 554-555.                         | 5.7 | 0         |
| 111 | Responses to Replication of DNA Damage. , 2005, , .                                                      |     | 0         |
| 112 | Replication forks and replication checkpoints in repair. Topics in Current Genetics, 2007, , 201-219.    | 0.7 | 0         |