
Richard D Ludescher

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9477216/publications.pdf Version: 2024-02-01

#	Article	lF	CITATIONS
1	Temperature-dependence of riboflavin phosphorescence in cryosolvents. Food Chemistry, 2022, 376, 131928.	8.2	0
2	Degradation kinetics of C-Phycocyanin under isothermal and dynamic thermal treatments. Food Chemistry, 2022, 382, 132266.	8.2	9
3	Luminescence Spectroscopy – a Useful Tool in Real-Time Monitoring of Viscosity during In-Vitro Digestion. Food Biophysics, 2021, 16, 181-190.	3.0	2
4	Effect of Encapsulation Process on Technological Functionality and Stability of Spirulina Platensis Extract. Food Biophysics, 2020, 15, 50-63.	3.0	14
5	Assessment of Oral Bioavailability and Biotransformation of Emulsified Nobiletin Using <i>In Vitro</i> and <i>In Vivo</i> Models. Journal of Agricultural and Food Chemistry, 2020, 68, 11412-11420.	5.2	22
6	Effect of bolus viscosity on carbohydrate digestion and glucose absorption processes: An <i>in vitro</i> study. Physics of Fluids, 2019, 31, .	4.0	14
7	Potential applications of luminescent molecular rotors in food science and engineering. Critical Reviews in Food Science and Nutrition, 2018, 58, 1902-1916.	10.3	11
8	Fluorescence Spectroscopy as a Tool to Unravel the Dynamics of Protein Nanoparticle Formation by Liquid Antisolvent Precipitation. Food Biophysics, 2017, 12, 211-221.	3.0	20
9	Solvent-Slaved Dynamic Processes Observed by Tryptophan Phosphorescence of Human Serum Albumin. Biophysical Journal, 2017, 112, 881-891.	0.5	2
10	Preparation and characterization of zein thermo-modified starch films. Carbohydrate Polymers, 2017, 157, 1254-1260.	10.2	31
11	Tryptophan Fluorescence Yields and Lifetimes as a Probe of Conformational Changes in Human Glucokinase. Journal of Fluorescence, 2017, 27, 1621-1631.	2.5	6
12	Total Phenolics and Antioxidant Capacity of Cocoa Pulp: Processing and Storage Study. Journal of Food Processing and Preservation, 2017, 41, e13029.	2.0	11
13	Standard reference for instrument response function in fluorescence lifetime measurements in visible and near infrared. Measurement Science and Technology, 2016, 27, 027001.	2.6	7
14	Identifying and selecting edible luminescent probes as sensors of food quality. AIMS Biophysics, 2016, 3, 319-339.	0.6	10
15	Molecular Mobility in Amorphous Sucrose Films Monitored by Riboflavin Phosphorescence - Potential Applications in Edible/Biodegradable Films. Biophysical Journal, 2015, 108, 621a.	0.5	1
16	Revisiting Time-Resolved Protein Phosphorescence. Applied Spectroscopy, 2015, 69, 1074-1081.	2.2	4
17	Fluorescence quenching study of resveratrol binding to zein and gliadin: Towards a more rational approach to resveratrol encapsulation using water-insoluble proteins. Food Chemistry, 2015, 185, 261-267.	8.2	262
18	Potential Use of Food Synthetic Colors as Intrinsic Luminescent Probes of the Physical State of Foods. ACS Symposium Series, 2015, , 253-267.	0.5	4

RICHARD D LUDESCHER

#	Article	IF	CITATIONS
19	Making sense of luminescence from GRAS optical probes. Current Opinion in Food Science, 2015, 4, 25-31.	8.0	7
20	Effect of additives on physicochemical properties in amorphous starch matrices. Food Chemistry, 2015, 171, 298-305.	8.2	14
21	Effects of glycerol on the molecular mobility and hydrogen bond network in starch matrix. Carbohydrate Polymers, 2015, 115, 401-407.	10.2	30
22	Influence of glycerol on the molecular mobility, oxygen permeability and microstructure of amorphous zein films. Food Hydrocolloids, 2015, 44, 94-100.	10.7	47
23	Influence of antioxidant structure on local molecular mobility in amorphous sucrose. Carbohydrate Research, 2014, 383, 14-20.	2.3	3
24	Effect of temperature on molecular mobility, oxygen permeability, and dynamic site heterogeneity in amorphous α-lactalbumin films. Food Hydrocolloids, 2013, 31, 357-364.	10.7	3
25	Influence of glycerol on molecular mobility and hydrogen bond network in amorphous glucose matrix. Carbohydrate Research, 2012, 361, 120-126.	2.3	5
26	Monitoring Molecular Oxygen Depletion in Wheat Flour Dough Using Erythrosin B Phosphorescence: A Biophysical Approach. Food Biophysics, 2012, 7, 138-144.	3.0	20
27	Molecular mobility in a homologous series of amorphous solid glucose oligomers. Food Chemistry, 2012, 132, 1814-1821.	8.2	7
28	Antioxidants Modulate Molecular Mobility, Oxygen Permeability, and Microstructure in Zein Films. Journal of Agricultural and Food Chemistry, 2011, 59, 13173-13180.	5.2	16
29	Effect of Starch on the Molecular Mobility of Amorphous Sucrose. Journal of Agricultural and Food Chemistry, 2011, 59, 3340-3347.	5.2	6
30	The Effect of Molecular Size on Molecular Mobility in Amorphous Oligosaccharides. Food Biophysics, 2010, 5, 82-93.	3.0	15
31	Photophysical Probes of the Amorphous Solid State of Proteins. Food Biophysics, 2010, 5, 337-345.	3.0	9
32	Vanillin Phosphorescence as a Probe of Molecular Mobility in Amorphous Sucrose. Journal of Fluorescence, 2010, 20, 125-133.	2.5	6
33	Syntheses of optically efficient (La1â^'xâ^'yCexTby)F3 nanocrystals via a hydrothermal method. Journal of Luminescence, 2010, 130, 1076-1084.	3.1	20
34	Effect of Xanthan on the Molecular Mobility of Amorphous Sucrose Detected by Erythrosin B Phosphorescence. Journal of Agricultural and Food Chemistry, 2009, 57, 709-716.	5.2	9
35	The effect of sodium chloride on molecular mobility in amorphous sucrose detected by phosphorescence from the triplet probe erythrosin B. Carbohydrate Research, 2008, 343, 350-363.	2.3	17
36	The effect of salts on molecular mobility in amorphous sucrose monitored by erythrosin B phosphorescence. Carbohydrate Research, 2008, 343, 2641-2649.	2.3	11

RICHARD D LUDESCHER

#	Article	IF	CITATIONS
37	Effect of gelatin on molecular mobility in amorphous sucrose detected by erythrosin B phosphorescence. Carbohydrate Research, 2008, 343, 2657-2666.	2.3	10
38	Molecular mobility and oxygen permeability in amorphous β-lactoglobulin films. Food Hydrocolloids, 2008, 22, 403-413.	10.7	16
39	Processing Stability of Squalene in Amaranth and Antioxidant Potential of Amaranth Extract. Journal of Agricultural and Food Chemistry, 2008, 56, 10675-10678.	5.2	39
40	The Effect of Glycerol on Molecular Mobility in Amorphous Sucrose Detected by Phosphorescence of Erythrosin B. Food Biophysics, 2007, 2, 133-145.	3.0	10
41	Phosphorescence of Erythrosin B as a Robust Probe of Molecular Mobility in Amorphous Solid Sucrose. Applied Spectroscopy, 2006, 60, 813-819.	2.2	13
42	Molecular mobility and dynamic site heterogeneity in amorphous lactose and lactitol from erythrosin B phosphorescence. Biophysical Chemistry, 2006, 123, 122-133.	2.8	12
43	Molecular Mobility and Oxygen Permeability in Amorphous Bovine Serum Albumin Films. Food Biophysics, 2006, 1, 151-162.	3.0	15
44	Effect of plasticizer on dynamic site heterogeneity in cold-cast gelatin films. Food Hydrocolloids, 2006, 20, 88-95.	10.7	29
45	Molecular mobility in water and glycerol plasticized cold- and hot-cast gelatin films. Food Hydrocolloids, 2006, 20, 96-105.	10.7	43
46	Dynamic site heterogeneity in amorphous maltose and maltitol from spectral heterogeneity in erythrosin B phosphorescence. Carbohydrate Research, 2005, 340, 2661-2669.	2.3	17
47	Molecular mobility and the glass transition in amorphous glucose, maltose, and maltotriose. Carbohydrate Research, 2005, 340, 2654-2660.	2.3	31
48	Molecular Mobility in Amorphous Maltose and Maltitol from Phosphorescence of Erythrosin B. Journal of Physical Chemistry B, 2005, 109, 16119-16126.	2.6	22
49	Erythrosin B Phosphorescence Monitors Molecular Mobility and Dynamic Site Heterogeneity in Amorphous Sucrose. Biophysical Journal, 2005, 88, 3551-3561.	0.5	50
50	Erythrosin B phosphorescence as a probe of oxygen diffusion in amorphous gelatin films. Food Hydrocolloids, 2004, 18, 621-630.	10.7	46
51	Native Fluorescence from Juvenile Stages of Common Food Storage Insects. Journal of Agricultural and Food Chemistry, 2003, 51, 544-549.	5.2	18
52	Phosphorescence Spectroscopy as a Probe of the Glassy State in Amorphous Solids. , 2003, , .		0
53	Temperature- and Surfactant-Induced Membrane Modifications That Alter Listeria monocytogenes Nisin Sensitivity by Different Mechanisms. Applied and Environmental Microbiology, 2002, 68, 5904-5910.	3.1	71
54	Mean DNA Bend Angle and Distribution of DNA Bend Angles in the CAP-DNA Complex in Solution. Journal of Molecular Biology, 2001, 312, 453-468.	4.2	55

RICHARD D LUDESCHER

#	Article	IF	CITATIONS
55	Room Temperature Phosphorescence from Tryptophan and Halogenated Tryptophan Analogs in Amorphous Sucrose. Photochemistry and Photobiology, 1999, 70, 166-171.	2.5	18
56	Differential Dynamic Behavior of Actin Filaments Containing Tightly-Bound Ca2+or Mg2+in the Presence of Myosin Heads Actively Hydrolyzing ATPâ€. Biochemistry, 1999, 38, 13288-13295.	2.5	9
57	Differential Mobility of Skeletal and Cardiac Tropomyosin on the Surface of F-Actinâ€. Biochemistry, 1999, 38, 9286-9294.	2.5	21
58	Influence of Tightly Bound Mg2+and Ca2+, Nucleotides, and Phalloidin on the Microsecond Torsional Flexibility of F-Actinâ€. Biochemistry, 1998, 37, 14529-14538.	2.5	21
59	Analysis of the Conformational Stability of the Active Domain of Recombinant Mouse TIMP-1 by Intrinsic Fluorescence. Biochemical and Biophysical Research Communications, 1998, 242, 303-309.	2.1	1
60	Phosphorescence from tryptophan and tryptophan analogs in the solid state. , 1998, , .		2
61	Phosphorescence Probes of the Glassy State in Amorphous Sucrose. Biotechnology Progress, 1995, 11, 540-544.	2.6	20
62	Theory and applications of fluorescence spectroscopy in food research. Trends in Food Science and Technology, 1995, 6, 69-75.	15.1	89
63	Tryptophan photophysics in rabbit skeletal myosin rod. Biophysical Chemistry, 1994, 49, 113-126.	2.8	8
64	Microsecond Rotational Dynamics of F-Actin in ActoS1 Filaments during ATP Hydrolysis. Biochemistry, 1994, 33, 9098-9104.	2.5	16
65	<title>Temperature dependence of tryptophan photophysics in rabbit skeletal myosin rod</title> . , 1994, , .		0
66	Tryptophan fluorescence quenching in rabbit skeletal myosin rod. Biophysical Chemistry, 1993, 48, 49-59.	2.8	9
67	CHARACTERIZATION OF SKELETAL MUSCLE ACTIN LABELED WITH THE TRIPLET PROBE ERYTHROSIN-5-IODOACETAMIDE. Photochemistry and Photobiology, 1993, 58, 858-866.	2.5	12
68	STEADY-STATE OPTICAL POLARIZATION ANISOTROPY OF RODLIKE MOLECULES UNDERGOING TORSIONAL TWISTING MOTIONS. Photochemistry and Photobiology, 1993, 58, 881-883.	2.5	7
69	INFLUENCE OF HYDRATION ON THE INTERNAL DYNAMICS OF HEN EGG WHITE LYSOZYME IN THE DRY STATE. Photochemistry and Photobiology, 1993, 58, 169-174.	2.5	26
70	<title>Quenching of tryptophan fluorescence in skeletal myosin rod</title> . , 1992, , .		2
71	Time-resolved rotational dynamics of phosphorescent-labeled myosin heads in contracting muscle fibers. Biochemistry, 1990, 29, 10023-10031.	2.5	40
72	Molecular dynamics of food proteins: experimental techniques and observations. Trends in Food Science and Technology, 1990, 1, 145-149.	15.1	3

#	Article	IF	CITATIONS
73	Microsecond rotational dynamics of phosphorescent-labeled muscle cross-bridges. Biochemistry, 1988, 27, 3343-3351.	2.5	47
74	Rotational dynamics of the single tryptophan of porcine pancreatic phospholipase A2, its zymogen, and an enzyme/micelle complex. A steady-state and time-resolved anisotropy study. Biochemistry, 1988, 27, 6618-6628.	2.5	34
75	Complex photophysics of the single tryptophan of porcine pancreatic phospholipase A2, its zymogen, and an enzyme/micelle complex. Biochemistry, 1985, 24, 7240-7249.	2.5	52