
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9477161/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Mercaptoacetamide: A promising zinc-binding group for the discovery of selective histone deacetylase 6 inhibitors. European Journal of Medicinal Chemistry, 2021, 209, 112887.	2.6	28
2	Tetrahydroquinoline-Capped Histone Deacetylase 6 Inhibitor SW-101 Ameliorates Pathological Phenotypes in a Charcot–Marie–Tooth Type 2A Mouse Model. Journal of Medicinal Chemistry, 2021, 64, 4810-4840.	2.9	17
3	Active Benzimidazole Derivatives Targeting the MmpL3 Transporter in <i>Mycobacterium abscessus</i> . ACS Infectious Diseases, 2020, 6, 324-337.	1.8	44
4	A patent review of histone deacetylase 6 inhibitors in neurodegenerative diseases (2014-2019). Expert Opinion on Therapeutic Patents, 2020, 30, 121-136.	2.4	56
5	Rational Design of Suprastat: A Novel Selective Histone Deacetylase 6 Inhibitor with the Ability to Potentiate Immunotherapy in Melanoma Models. Journal of Medicinal Chemistry, 2020, 63, 10246-10262.	2.9	29
6	Synergistic Interactions of Indole-2-Carboxamides and \hat{l}^2 -Lactam Antibiotics against Mycobacterium abscessus. Antimicrobial Agents and Chemotherapy, 2020, 64, .	1.4	12
7	HDAC6 inhibition promotes α-tubulin acetylation and ameliorates CMT2A peripheral neuropathy in mice. Experimental Neurology, 2020, 328, 113281.	2.0	39
8	Structural and in Vivo Characterization of Tubastatin A, a Widely Used Histone Deacetylase 6 Inhibitor. ACS Medicinal Chemistry Letters, 2020, 11, 706-712.	1.3	47
9	Design and Synthesis of Bitopic 2-Phenylcyclopropylmethylamine (PCPMA) Derivatives as Selective Dopamine D3 Receptor Ligands. Journal of Medicinal Chemistry, 2020, 63, 4579-4602.	2.9	15
10	Discovery of a New Isoxazole-3-hydroxamate-Based Histone Deacetylase 6 Inhibitor SS-208 with Antitumor Activity in Syngeneic Melanoma Mouse Models. Journal of Medicinal Chemistry, 2019, 62, 8557-8577.	2.9	61
11	Design of fluorinated cyclopropane derivatives of 2-phenylcyclopropylmethylamine leading to identification of a selective serotonin 2C (5-HT2C) receptor agonist without 5-HT2B agonism. European Journal of Medicinal Chemistry, 2019, 182, 111626.	2.6	3
12	Selective HDAC6 inhibitors improve anti-PD-1 immune checkpoint blockade therapy by decreasing the anti-inflammatory phenotype of macrophages and down-regulation of immunosuppressive proteins in tumor cells. Scientific Reports, 2019, 9, 6136.	1.6	124
13	Brain Penetrable Histone Deacetylase 6 Inhibitor SW-100 Ameliorates Memory and Learning Impairments in a Mouse Model of Fragile X Syndrome. ACS Chemical Neuroscience, 2019, 10, 1679-1695.	1.7	50
14	HDAC6 is a therapeutic target in mutant GARS-induced Charcot-Marie-Tooth disease. Brain, 2018, 141, 673-687.	3.7	93
15	Molecular Basis for the Selective Inhibition of Histone Deacetylase 6 by a Mercaptoacetamide Inhibitor. ACS Medicinal Chemistry Letters, 2018, 9, 1301-1305.	1.3	24
16	2-Aminoadipic Acid–C(O)–Glutamate Based Prostate-Specific Membrane Antigen Ligands for Potential Use as Theranostics. ACS Medicinal Chemistry Letters, 2018, 9, 1099-1104.	1.3	6
17	Targeting Mycolic Acid Transport by Indole-2-carboxamides for the Treatment of <i>Mycobacterium abscessus</i> Infections. Journal of Medicinal Chemistry, 2017, 60, 5876-5888.	2.9	61
18	Design and Synthesis of Mercaptoacetamides as Potent, Selective, and Brain Permeable Histone Deacetylase 6 Inhibitors. ACS Medicinal Chemistry Letters, 2017, 8, 510-515.	1.3	30

#	Article	IF	CITATIONS
19	5-HT2C Agonists Modulate Schizophrenia-Like Behaviors in Mice. Neuropsychopharmacology, 2017, 42, 2163-2177.	2.8	42
20	Molecular Pathways: Revisiting Glycogen Synthase Kinase-3β as a Target for the Treatment of Cancer. Clinical Cancer Research, 2017, 23, 1891-1897.	3.2	113
21	Synthesis and Pharmacological Evaluation of Selective Histone Deacetylase 6 Inhibitors in Melanoma Models. ACS Medicinal Chemistry Letters, 2017, 8, 1031-1036.	1.3	25
22	Discovery of <i>N</i> -Substituted (2-Phenylcyclopropyl)methylamines as Functionally Selective Serotonin 2C Receptor Agonists for Potential Use as Antipsychotic Medications. Journal of Medicinal Chemistry, 2017, 60, 6273-6288.	2.9	19
23	Combination Treatment with the GSK-3 Inhibitor 9-ING-41 and CCNU Cures Orthotopic Chemoresistant Glioblastoma in Patient-Derived Xenograft Models. Translational Oncology, 2017, 10, 669-678.	1.7	32
24	Controlling Extra- and Intramacrophagic Mycobacterium abscessus by Targeting Mycolic Acid Transport. Frontiers in Cellular and Infection Microbiology, 2017, 7, 388.	1.8	18
25	Histone/protein deacetylase 11 targeting promotes Foxp3+ Treg function. Scientific Reports, 2017, 7, 8626.	1.6	64
26	Synthesis and Behavioral Studies of Chiral Cyclopropanes as Selective α4β2-Nicotinic Acetylcholine Receptor Partial Agonists Exhibiting an Antidepressant Profile. Part III. ACS Chemical Neuroscience, 2016, 7, 811-822.	1.7	8
27	Development of Small Molecules that Specifically Inhibit the D-loop Activity of RAD51. Journal of Medicinal Chemistry, 2016, 59, 4511-4525.	2.9	45
28	Exploration of the labeling of [¹¹ C]tubastatin A at the hydroxamic acid site with [¹¹ C]carbon monoxide. Journal of Labelled Compounds and Radiopharmaceuticals, 2016, 59, 9-13.	0.5	14
29	Identification of HDAC6â€Selective Inhibitors of Low Cancer Cell Cytotoxicity. ChemMedChem, 2016, 11, 81-92.	1.6	29
30	Synthesis and biological evaluation of novel hybrids of highly potent and selective α4β2-Nicotinic acetylcholine receptor (nAChR) partial agonists. European Journal of Medicinal Chemistry, 2016, 124, 689-697.	2.6	14
31	GSK-3 inhibition overcomes chemoresistance in human breast cancer. Cancer Letters, 2016, 380, 384-392.	3.2	55
32	Design and Discovery of Functionally Selective Serotonin 2C (5-HT _{2C}) Receptor Agonists. Journal of Medicinal Chemistry, 2016, 59, 9866-9880.	2.9	28
33	Tubastatin A, an HDAC6 inhibitor, alleviates stroke-induced brain infarction and functional deficits: potential roles of α-tubulin acetylation and FGF-21 up-regulation. Scientific Reports, 2016, 6, 19626.	1.6	84
34	Recent Developments Using Small Molecules to Target RAD51: How to Best Modulate RAD51 for Anticancer Therapy?. ChemMedChem, 2016, 11, 2468-2473.	1.6	36
35	Indole-2-carboxamide-based MmpL3 Inhibitors Show Exceptional Antitubercular Activity in an Animal Model of Tuberculosis Infection. Journal of Medicinal Chemistry, 2016, 59, 6232-6247.	2.9	135
36	Why Hydroxamates May Not Be the Best Histone Deacetylase Inhibitors—What Some May Have Forgotten or Would Rather Forget?. ChemMedChem, 2016, 11, 15-21.	1.6	168

#	Article	IF	CITATIONS
37	GSK-3β Governs Inflammation-Induced NFATc2 Signaling Hubs to Promote Pancreatic Cancer Progression. Molecular Cancer Therapeutics, 2016, 15, 491-502.	1.9	44
38	Further Advances in Optimizing (2-Phenylcyclopropyl)methylamines as Novel Serotonin 2C Agonists: Effects on Hyperlocomotion, Prepulse Inhibition, and Cognition Models. Journal of Medicinal Chemistry, 2016, 59, 578-591.	2.9	26
39	Bicyclic-Capped Histone Deacetylase 6 Inhibitors with Improved Activity in a Model of Axonal Charcot–Marie–Tooth Disease. ACS Chemical Neuroscience, 2016, 7, 240-258.	1.7	60
40	We Need 2C but Not 2B: Developing Serotonin 2C (5â€HT _{2C}) Receptor Agonists for the Treatment of CNS Disorders. ChemMedChem, 2015, 10, 1963-1967.	1.6	18
41	Optimization of 2-Phenylcyclopropylmethylamines as Selective Serotonin 2C Receptor Agonists and Their Evaluation as Potential Antipsychotic Agents. Journal of Medicinal Chemistry, 2015, 58, 1992-2002.	2.9	31
42	Design and synthesis of (2-(5-chloro-2,2-dimethyl-2,3-dihydrobenzofuran-7-yl)cyclopropyl)methanamine as a selective serotonin 2C agonist. Tetrahedron Letters, 2015, 56, 3420-3422.	0.7	15
43	Thiol-Based Potent and Selective HDAC6 Inhibitors Promote Tubulin Acetylation and T-Regulatory Cell Suppressive Function. ACS Medicinal Chemistry Letters, 2015, 6, 1156-1161.	1.3	36
44	Mutation of <i>Rv2887</i> , a <i>marR</i> -Like Gene, Confers Mycobacterium tuberculosis Resistance to an Imidazopyridine-Based Agent. Antimicrobial Agents and Chemotherapy, 2015, 59, 6873-6881.	1.4	25
45	A selective histone deacetylase-6 inhibitor improves BDNF trafficking in hippocampal neurons from Mecp2 knockout mice: implications for Rett syndrome. Frontiers in Cellular Neuroscience, 2014, 8, 68.	1.8	47
46	The RAD51-Stimulatory Compound RS-1 Can Exploit the RAD51 Overexpression That Exists in Cancer Cells and Tumors. Cancer Research, 2014, 74, 3546-3555.	0.4	40
47	Divergent roles of histone deacetylase 6 (HDAC6) and histone deacetylase 11 (HDAC11) on the transcriptional regulation of IL10 in antigen presenting cells. Molecular Immunology, 2014, 60, 44-53.	1.0	124
48	A Novel Role for Histone Deacetylase 6 in the Regulation of the Tolerogenic STAT3/IL-10 Pathway in APCs. Journal of Immunology, 2014, 193, 2850-2862.	0.4	106
49	Enantiopure Cyclopropane-Bearing Pyridyldiazabicyclo[3.3.0]octanes as Selective α4β2-nAChR Ligands. ACS Medicinal Chemistry Letters, 2014, 5, 1196-1201.	1.3	8
50	Histone deacetylase 6 inhibition improves memory and reduces total tau levels in a mouse model of tau deposition. Alzheimer's Research and Therapy, 2014, 6, 12.	3.0	105
51	Indoleamides are active against drug-resistant Mycobacterium tuberculosis. Nature Communications, 2013, 4, 2907.	5.8	130
52	Preliminary Structure–Activity Relationships and Biological Evaluation of Novel Antitubercular Indolecarboxamide Derivatives Against Drug-Susceptible and Drug-Resistant Mycobacterium tuberculosis Strains. Journal of Medicinal Chemistry, 2013, 56, 4093-4103.	2.9	118
53	Selective Histone Deacetylase 6 Inhibitors Bearing Substituted Urea Linkers Inhibit Melanoma Cell Growth. Journal of Medicinal Chemistry, 2012, 55, 9891-9899.	2.9	153
54	Chiral Mercaptoacetamides Display Enantioselective Inhibition of Histone Deacetylaseâ€6 and Exhibit Neuroprotection in Cortical Neuron Models of Oxidative Stress. ChemMedChem, 2012, 7, 425-439.	1.6	29

#	Article	IF	CITATIONS
55	On the path from chemistry to neuroscience: Early explorations in chemical medicine under the mentorship of Dr. Erminio Costa, a neuroscientist with a big brain and a bigger heart. Pharmacological Research, 2011, 64, 327-329.	3.1	1
56	HDAC6 inhibitors reverse axonal loss in a mouse model of mutant HSPB1–induced Charcot-Marie-Tooth disease. Nature Medicine, 2011, 17, 968-974.	15.2	405
57	Rational Drug Design Leading to the Identification of a Potent 5-HT _{2C} Agonist Lacking 5-HT _{2B} Activity. ACS Medicinal Chemistry Letters, 2011, 2, 929-932.	1.3	15
58	Effective Collaborations: How to Protect Yourself, Your Collaborators, and Your Data. ChemMedChem, 2011, 6, 411-414.	1.6	0
59	Identification of a Glycogen Synthase Kinaseâ€3β Inhibitor that Attenuates Hyperactivity in CLOCK Mutant Mice. ChemMedChem, 2011, 6, 1593-1602.	1.6	36
60	Rational Design and Simple Chemistry Yield a Superior, Neuroprotective HDAC6 Inhibitor, Tubastatin A. Journal of the American Chemical Society, 2010, 132, 10842-10846.	6.6	625
61	HTS and Rational Drug Design to Generate a Class of 5â€HT _{2C} â€&elective Ligands for Possible Use in Schizophrenia ChemMedChem, 2010, 5, 1221-1225.	1.6	24
62	HDAC6 is a target for protection and regeneration following injury in the nervous system. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 19599-19604.	3.3	279
63	Searching for Disease Modifiers—PKC Activation and HDAC Inhibition—A Dual Drug Approach to Alzheimer's Disease that Decreases Aβ Production while Blocking Oxidative Stress. ChemMedChem, 2009, 4, 1095-1105.	1.6	42
64	Chemistry and Pharmacology of Nicotinic Ligands Based on 6â€[5â€(Azetidinâ€2â€ylmethoxy)pyridinâ€3â€yl]hexâ€5â€ynâ€1â€ol (AMOPâ€Hâ€OH) for Possible Use in Dep ChemMedChem, 2009, 4, 1279-1291.	ore ss ion.	35
65	Isoxazole moiety in the linker region of HDAC inhibitors adjacent to the Zn-chelating group: Effects on HDAC biology and antiproliferative activity. Bioorganic and Medicinal Chemistry Letters, 2009, 19, 3023-3026.	1.0	37
66	Selective 5-Hydroxytryptamine 2C Receptor Agonists Derived from the Lead Compound Tranylcypromine: Identification of Drugs with Antidepressant-Like Action. Journal of Medicinal Chemistry, 2009, 52, 1885-1902.	2.9	54
67	Novel Inhibitors of Human Histone Deacetylase (HDAC) Identified by QSAR Modeling of Known Inhibitors, Virtual Screening, and Experimental Validation. Journal of Chemical Information and Modeling, 2009, 49, 461-476.	2.5	99
68	A Novel Role for Histone Deacetylase 6 (HDAC6) in the Regulation of IL-10 and Immune Tolerance Mediated by Antigen-Presenting Cells (APCs) Blood, 2009, 114, 1360-1360.	0.6	0
69	Chemistry, Biology, and QSAR Studies of Substituted Biaryl Hydroxamates and Mercaptoacetamides as HDAC Inhibitors—Nanomolarâ€Potency Inhibitors of Pancreatic Cancer Cell Growth. ChemMedChem, 2008, 3, 487-501.	1.6	50
70	Interactions between Human Glutamate Carboxypeptidase II and Urea-Based Inhibitors: Structural Characterization. Journal of Medicinal Chemistry, 2008, 51, 7737-7743.	2.9	138
71	Use of the Nitrile Oxide Cycloaddition (NOC) Reaction for Molecular Probe Generation: A New Class of Enzyme Selective Histone Deacetylase Inhibitors (HDACIs) Showing Picomolar Activity at HDAC6. Journal of Medicinal Chemistry, 2008, 51, 4370-4373.	2.9	171
72	Phosphatidylinositol Ether Lipid Analogues That Inhibit AKT Also Independently Activate the Stress Kinase, p38α, through MKK3/6-independent and -dependent Mechanisms. Journal of Biological Chemistry, 2007, 282, 27020-27029.	1.6	49

#	Article	IF	CITATIONS
73	Functional Differences in Epigenetic ModulatorsSuperiority of Mercaptoacetamide-Based Histone Deacetylase Inhibitors Relative to Hydroxamates in Cortical Neuron Neuroprotection Studies. Journal of Medicinal Chemistry, 2007, 50, 3054-3061.	2.9	106
74	Acetylenic Pyridines for Use in PET Imaging of Nicotinic Receptors. ChemMedChem, 2007, 2, 54-57.	1.6	11
75	Chemical Medicine: Novel 10-Substituted Cytisine Derivatives with Increased Selectivity for α4β2 Nicotinic Acetylcholine Receptors. ChemMedChem, 2007, 2, 1157-1161.	1.6	27
76	Structure-Based Design Leads to the Identification of Lithium Mimetics That Block Mania-like Effects in Rodents. Possible New GSK-3β Therapies for Bipolar Disorders. Journal of the American Chemical Society, 2007, 129, 8328-8332.	6.6	83
77	Highly Potent and Specific GSK-3β Inhibitors That Block Tau Phosphorylation and Decrease α-Synuclein Protein Expression in a Cellular Model of Parkinson's Disease. ChemMedChem, 2006, 1, 256-266.	1.6	93
78	Chemistry and biology of mercaptoacetamides as novel histone deacetylase inhibitors. Bioorganic and Medicinal Chemistry Letters, 2005, 15, 1389-1392.	1.0	62
79	Rational Design and Development of Radiation-Sensitizing Histone Deacetylase Inhibitors. Chemistry and Biodiversity, 2005, 2, 1452-1461.	1.0	12
80	Synthesis of Urea-Based Inhibitors as Active Site Probes of Glutamate Carboxypeptidase II:  Efficacy as Analgesic Agents. Journal of Medicinal Chemistry, 2004, 47, 1729-1738.	2.9	190
81	Design of Remarkably Simple, Yet Potent Urea-Based Inhibitors of Glutamate Carboxypeptidase II (NAALADase). Journal of Medicinal Chemistry, 2001, 44, 298-301.	2.9	225