List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9476726/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Comments on "Hydrothermal liquefaction of Cd-enriched Amaranthus hypochondriacus L. in ethanol–water co-solvent: Focus on Iow-N bio-oil and heavy metal/metal-like distribution― Fuel, 2022, 310, 122396.	6.4	0
2	Comments on "Influence of extraction solvents on the recovery yields and properties of bio-oils from woody biomass liquefaction in sub-critical water, ethanol or water–ethanol mixed solvent― Fuel, 2022, 319, 123865.	6.4	0
3	In-situ catalytic co-pyrolysis of kukersite oil shale with black pine wood over acid zeolites. Journal of Analytical and Applied Pyrolysis, 2021, 155, 105050.	5.5	14
4	Effects of Metal Chlorides on the Hydrothermal Carbonization of Grape Seeds. Energy & Fuels, 2021, 35, 8834-8843.	5.1	10
5	Activated carbons from co-carbonization of waste truck tires and spent tea leaves. Sustainable Chemistry and Pharmacy, 2021, 21, 100410.	3.3	18
6	Corrigendum to "Activated carbons from co-carbonization of waste truck tires and spent tea leaves― [Sustain. Chem. Pharm. (21) 2021 (100410)]. Sustainable Chemistry and Pharmacy, 2021, 21, 100429.	3.3	0
7	Comment on "Biocrude Upgrading in Different Solvents after Microalgae Hydrothermal Liquefaction― Problems, Pitfalls, and Solutions. Industrial & Engineering Chemistry Research, 2021, 60, 12133-12135.	3.7	0
8	Hydrothermal liquefaction of olive oil residues. Sustainable Chemistry and Pharmacy, 2021, 22, 100476.	3.3	6
9	Use of a Lewis acid, a BrÃ,nsted acid, and their binary mixtures for the hydrothermal liquefaction of lignocellulose. Fuel, 2021, 304, 121398.	6.4	14
10	Use of a Lewis acid, a BrÃ,nsted acid, and their binary mixtures for the liquefaction of lignocellulose by supercritical ethanol processing. Sustainable Energy and Fuels, 2021, 5, 5445-5453.	4.9	3
11	Effects of hydrothermal carbonization on products from fast pyrolysis of cellulose. Journal of the Energy Institute, 2021, 99, 299-306.	5.3	11
12	Microporous activated carbons from lignocellulosic biomass by KOH activation. Fullerenes Nanotubes and Carbon Nanostructures, 2020, 28, 1030-1037.	2.1	29
13	Sustainable energy and fuels from biomass: a review focusing on hydrothermal biomass processing. Sustainable Energy and Fuels, 2020, 4, 4390-4414.	4.9	140
14	One-step transformation of biomass to fuel precursors using a bi-functional combination of Pd/C and water tolerant Lewis acid. Fuel, 2020, 277, 118200.	6.4	15
15	Online fast pyrolysis of cellulose over titanium dioxide using tandem micro-reactor-GC-MS. Sustainable Chemistry and Pharmacy, 2020, 16, 100268.	3.3	3
16	Hydrothermal carbonization of lignocellulosic biomass and effects of combined Lewis and BrÃ,nsted acid catalysts. Fuel, 2020, 279, 118458.	6.4	45
17	Effects of Acidic and Alkaline Metal Triflates on the Hydrothermal Carbonization of Glucose and Cellulose. Energy & amp; Fuels, 2019, 33, 7473-7479.	5.1	26
18	Co-hydrothermal Liquefaction of Lignocellulosic Biomass with Kukersite Oil Shale. Energy & amp; Fuels, 2019, 33, 7424-7435.	5.1	11

#	Article	IF	CITATIONS
19	Influence of Co-Pyrolysis of Waste Tetra Pak with Waste Motor Oil on Product Distribution and Properties for Fuel Application. Energy & Fuels, 2019, 33, 11101-11112.	5.1	22
20	Hydrothermal and supercritical ethanol processing of woody biomass with a high-silica zeolite catalyst. Biomass Conversion and Biorefinery, 2019, 9, 669-680.	4.6	15
21	One-pot transformation of lignocellulosic biomass into crude bio-oil with metal chlorides via hydrothermal and supercritical ethanol processing. Bioresource Technology, 2019, 288, 121500.	9.6	24
22	Hydrothermal Liquefaction of Lignocellulosic Biomass Using Potassium Fluoride-Doped Alumina. Energy & Fuels, 2019, 33, 3248-3256.	5.1	37
23	The role of capping agents in the fabrication of nano-silver-decorated hydrothermal carbons. Journal of Environmental Chemical Engineering, 2019, 7, 103415.	6.7	8
24	Anode performance of hydrothermally grown carbon nanostructures and their molybdenum chalcogenides for Li-ion batteries. MRS Communications, 2018, 8, 610-616.	1.8	6
25	Production of crude bio-oil and biochar from hydrothermal conversion of jujube stones with metal carbonates. Biofuels, 2018, 9, 613-623.	2.4	4
26	Alkali-catalyzed hydrothermal treatment of sawdust for production of a potential feedstock for catalytic gasification. Applied Energy, 2018, 231, 594-599.	10.1	8
27	Ethanol: A Promising Green Solvent for the Deconstruction of Lignocellulose. ChemSusChem, 2018, 11, 3559-3575.	6.8	81
28	Co-processing of olive bagasse with crude rapeseed oil via pyrolysis. Waste Management and Research, 2017, 35, 480-490.	3.9	2
29	Deconstruction of lignocellulosic biomass with hydrated cerium (III) chloride in water and ethanol. Applied Catalysis A: General, 2017, 546, 67-78.	4.3	12
30	Hydrothermal carbonization for the preparation of hydrochars from glucose, cellulose, chitin, chitosan and wood chips via low-temperature and their characterization. Bioresource Technology, 2017, 246, 82-87.	9.6	135
31	Supercritical fluid extraction of biofuels from biomass. Environmental Chemistry Letters, 2017, 15, 29-41.	16.2	46
32	Adsorption of Pb(II) and Cd(II) Ions Onto Dyeâ€Attached Sawdust. Clean - Soil, Air, Water, 2016, 44, 339-344.	1.1	3
33	Single shot pyrolysis and on-line conversion of lignocellulosic biomass with HZSM-5 catalyst using tandem micro-reactor-GC-MS. RSC Advances, 2016, 6, 46108-46115.	3.6	32
34	Co-pyrolysis of waste polyolefins with waste motor oil. Journal of Analytical and Applied Pyrolysis, 2016, 119, 233-241.	5.5	48
35	Cellulose-derived carbon spheres produced under supercritical ethanol conditions. Clean Technologies and Environmental Policy, 2016, 18, 331-338.	4.1	12
36	Experimental design for extraction of bio-oils from flax seeds under supercritical ethanol conditions. Clean Technologies and Environmental Policy, 2016, 18, 461-471.	4.1	11

#	Article	IF	CITATIONS
37	Preparation of nano-silver-supported activated carbon using different ligands. Research on Chemical Intermediates, 2016, 42, 1663-1676.	2.7	21
38	The effects of water tolerant Lewis acids on the hydrothermal liquefaction of lignocellulosic biomass. Journal of the Energy Institute, 2016, 89, 627-635.	5.3	30
39	Supercritical Fluid Extraction of Bioâ€oils from Hawthorn Stones: A Box–Behnken Design for the Extraction Parameters. Energy Technology, 2015, 3, 40-47.	3.8	5
40	Sage oil extraction and optimization by response surface methodology. Industrial Crops and Products, 2015, 76, 829-835.	5.2	24
41	Removal of lead (II) and nickel (II) ions from aqueous solution using activated carbon prepared from rapeseed oil cake by Na2CO3 activation. Clean Technologies and Environmental Policy, 2015, 17, 747-756.	4.1	63
42	Pyrolysis of agricultural residues for bio-oil production. Clean Technologies and Environmental Policy, 2015, 17, 211-223.	4.1	56
43	Activated Carbons From Grape Seeds By Chemical Activation With Potassium Carbonate And Potassium Hydroxide. Applied Surface Science, 2014, 293, 138-142.	6.1	175
44	Optimization of Ethanol Supercritical Fluid Extraction of Medicinal Compounds from St. John's Wort by Central Composite Design. Analytical Letters, 2014, 47, 1900-1911.	1.8	7
45	A review of hydrothermal biomass processing. Renewable and Sustainable Energy Reviews, 2014, 40, 673-687.	16.4	509
46	Analytical pyrolysis of biomass using gas chromatography coupled to mass spectrometry. TrAC - Trends in Analytical Chemistry, 2014, 61, 11-16.	11.4	63
47	Co-pyrolysis of pine nut shells with scrap tires. Fuel, 2014, 137, 85-93.	6.4	102
48	Catalytic pyrolysis of waste melamine coated chipboard. Environmental Progress and Sustainable Energy, 2013, 32, 156-161.	2.3	9
49	Hydrothermal conversion of woody biomass with disodium octaborate tetrahydrate and boric acid. Industrial Crops and Products, 2013, 49, 334-340.	5.2	17
50	Application of response surface methodology to extract yields from stinging nettle under supercritical ethanol conditions. Journal of Supercritical Fluids, 2013, 84, 164-172.	3.2	13
51	Supercritical ethanol extraction of bio-oils from German beech wood: Design of experiments. Industrial Crops and Products, 2013, 49, 720-729.	5.2	35
52	Non-catalytic and catalytic hydrothermal liquefaction of biomass. Research on Chemical Intermediates, 2013, 39, 485-498.	2.7	77
53	Hydrothermal wood processing using borax decahydrate and sodium borohydride. Journal of Analytical and Applied Pyrolysis, 2013, 104, 68-72.	5.5	15
54	Effect of sodium perborate monohydrate concentrations on product distributions from the hydrothermal liquefaction of Scotch pine wood. Fuel Processing Technology, 2013, 110, 17-23.	7.2	24

#	Article	IF	CITATIONS
55	t-BuOK catalyzed bio-oil production from woody biomass under sub-critical water conditions. Environmental Chemistry Letters, 2013, 11, 25-31.	16.2	23
56	Removal of Lead (II) Ions from Aqueous Solutions onto Activated Carbon Derived from Waste Biomass. Scientific World Journal, The, 2013, 2013, 1-7.	2.1	24
57	Pyrolysis of Table Sugar. Scientific World Journal, The, 2013, 2013, 1-3.	2.1	1
58	Hydrothermal liquefaction of beech wood using a natural calcium borate mineral. Journal of Supercritical Fluids, 2012, 72, 134-139.	3.2	76
59	Hydrothermal liquefaction of cornelian cherry stones for bio-oil production. Bioresource Technology, 2012, 110, 682-687.	9.6	105
60	Preparation and Characterization of Activated Carbons from Waste Melamine Coated Chipboard by NaOH Activation. Ekoloji, 2012, 21, 123-128.	0.4	2
61	Lewis acid catalyzed diesel-like fuel production from raw corn oil. International Journal of Energy Research, 2009, 33, 327-332.	4.5	6
62	Energy production from the pyrolysis of waste biomasses. International Journal of Energy Research, 2009, 33, 576-581.	4.5	25
63	The slow pyrolysis of pomegranate seeds: The effect of temperature on the product yields and bio-oil properties. Journal of Analytical and Applied Pyrolysis, 2009, 84, 151-156.	5.5	135
64	Preparation and characterization of activated carbon from waste biomass. Journal of Hazardous Materials, 2009, 165, 481-485.	12.4	320
65	Preparation and characterization of activated carbon produced from pomegranate seeds by ZnCl2 activation. Applied Surface Science, 2009, 255, 8890-8896.	6.1	200
66	Activated carbons from waste biomass by sulfuric acid activation and their use on methylene blue adsorption. Bioresource Technology, 2008, 99, 6214-6222.	9.6	417
67	The influence of the waste ethylene vinyl acetate copolymer on the thermal degradation of the waste polypropylene. Fuel Processing Technology, 2008, 89, 1201-1206.	7.2	12
68	Hydrothermal upgrading of biomass: Effect of KCO concentration and biomass/water ratio on products distribution. Bioresource Technology, 2006, 97, 90-98.	9.6	175
69	Comparative studies of oil compositions produced from sawdust, rice husk, lignin and cellulose by hydrothermal treatment. Fuel, 2005, 84, 875-884.	6.4	286
70	Evaluation of two different scrap tires as hydrocarbon source by pyrolysis. Fuel, 2005, 84, 1884-1892.	6.4	204
71	Copyrolysis of scrap tires with waste lubricant oil. Fuel Processing Technology, 2005, 87, 53-58.	7.2	66
72	Low-temperature catalytic hydrothermal treatment of wood biomass: analysis of liquid products. Chemical Engineering Journal, 2005, 108, 127-137.	12.7	223

#	Article	IF	CITATIONS
73	Catalytic hydrothermal treatment of pine wood biomass: effect of RbOH and CsOH on product distribution. Journal of Chemical Technology and Biotechnology, 2005, 80, 1097-1102.	3.2	47
74	Trace element biomonitoring by leaves of Populus nigra L. from Western Anatolia, Turkey. Journal of Environmental Biology, 2005, 26, 665-8.	0.5	12
75	Effect of Rb and Cs carbonates for production of phenols from liquefaction of wood biomass. Fuel, 2004, 83, 2293-2299.	6.4	83
76	Low-Temperature Hydrothermal Treatment of Biomass:  Effect of Reaction Parameters on Products and Boiling Point Distributions. Energy & Fuels, 2004, 18, 234-241.	5.1	141
77	Liquefaction of municipal waste plastics in VGO over acidic and non-acidic catalystsâ~†. Fuel, 2003, 82, 415-423.	6.4	52
78	Catalytic and thermal degradation of high-density polyethylene in vacuum gas oil over non-acidic and acidic catalysts. Applied Catalysis A: General, 2003, 242, 51-62.	4.3	31
79	Catalytic Coprocessing of Low-Density Polyethylene with VGO Using Metal Supported on Activated Carbon. Energy & Fuels, 2002, 16, 1301-1308.	5.1	35
80	Preparation of o-bromobenzophenone derivatives from lithium diarylcuprate(I) reagents. Applied Organometallic Chemistry, 2000, 14, 341-344.	3.5	3