Jeffrey Copps

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9476282/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Open and closed structures reveal allostery and pliability in the HIV-1 envelope spike. Nature, 2017, 547, 360-363.	13.7	217
2	Tailored design of protein nanoparticle scaffolds for multivalent presentation of viral glycoprotein antigens. ELife, 2020, 9, .	2.8	123
3	HIV-1 vaccine design through minimizing envelope metastability. Science Advances, 2018, 4, eaau6769.	4.7	75
4	Mapping the immunogenic landscape of near-native HIV-1 envelope trimers in non-human primates. PLoS Pathogens, 2020, 16, e1008753.	2.1	61
5	HIV-1 Envelope and MPER Antibody Structures in Lipid Assemblies. Cell Reports, 2020, 31, 107583.	2.9	60
6	Co-evolution of HIV Envelope and Apex-Targeting Neutralizing Antibody Lineage Provides Benchmarks for Vaccine Design. Cell Reports, 2018, 23, 3249-3261.	2.9	52
7	Structural and functional evaluation of de novo-designed, two-component nanoparticle carriers for HIV Env trimer immunogens. PLoS Pathogens, 2020, 16, e1008665.	2.1	52
8	Conformational Plasticity in the HIV-1 Fusion Peptide Facilitates Recognition by Broadly Neutralizing Antibodies. Cell Host and Microbe, 2019, 25, 873-883.e5.	5.1	42
9	Targeting HIV Env immunogens to B cell follicles in nonhuman primates through immune complex or protein nanoparticle formulations. Npj Vaccines, 2020, 5, 72.	2.9	39
10	Enhancing glycan occupancy of soluble HIV-1 envelope trimers to mimic the native viral spike. Cell Reports, 2021, 35, 108933.	2.9	37
11	Polyclonal antibody responses to HIV Env immunogens resolved using cryoEM. Nature Communications, 2021, 12, 4817.	5.8	35
12	Structural mapping of antibody landscapes to human betacoronavirus spike proteins. Science Advances, 2022, 8, eabn2911.	4.7	28
13	Structural insights of a highly potent pan-neutralizing SARS-CoV-2 human monoclonal antibody. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, e2120976119.	3.3	27
14	Structural Basis of Pan-Ebolavirus Neutralization by an Antibody Targeting the Glycoprotein Fusion Loop. Cell Reports, 2018, 24, 2723-2732.e4.	2.9	26
15	Convergence of a common solution for broad ebolavirus neutralization by glycan cap-directed human antibodies. Cell Reports, 2021, 35, 108984.	2.9	22
16	Mining HIV controllers for broad and functional antibodies to recognize and eliminate HIV-infected cells. Cell Reports, 2021, 35, 109167.	2.9	8
17	Neutralizing Antibodies Induced by First-Generation gp41-Stabilized HIV-1 Envelope Trimers and Nanoparticles. MBio, 2021, 12, e0042921.	1.8	6

2

JEFFREY COPPS

#	Article	IF	CITATIONS
19	Title is missing!. , 2020, 16, e1008665.		0
20	Title is missing!. , 2020, 16, e1008665.		0
21	Title is missing!. , 2020, 16, e1008665.		0
22	Mapping the immunogenic landscape of near-native HIV-1 envelope trimers in non-human primates. , 2020, 16, e1008753.		0
23	Mapping the immunogenic landscape of near-native HIV-1 envelope trimers in non-human primates. , 2020, 16, e1008753.		0
24	Mapping the immunogenic landscape of near-native HIV-1 envelope trimers in non-human primates. , 2020, 16, e1008753.		0
25	Mapping the immunogenic landscape of near-native HIV-1 envelope trimers in non-human primates. , 2020, 16, e1008753.		0