Peng Zheng

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9475759/publications.pdf Version: 2024-02-01

DENC THENC

#	Article	IF	CITATIONS
1	Combination of Click Chemistry and Enzymatic Ligation for Stable and Efficient Protein Immobilization for Single-Molecule Force Spectroscopy. CCS Chemistry, 2022, 4, 598-604.	4.6	44
2	Detection of weak non-covalent cation-ï€ interactions in NGAL by single-molecule force spectroscopy. Nano Research, 2022, 15, 4251-4257.	5.8	6
3	Self-sorting double network hydrogels with photo-definable biochemical cues as artificial synthetic extracellular matrix. Nano Research, 2022, 15, 4294-4301.	5.8	11
4	Direct Measurements of the Cobaltâ€Thiolate Bonds Strength in Rubredoxin by Singleâ€Molecule Force Spectroscopy. ChemBioChem, 2022, , .	1.3	3
5	Singleâ€Molecule Force Spectroscopy Reveals Stability of mitoNEET and its [2Fe2Se] Cluster in Weakly Acidic and Basic Solutions. ChemistryOpen, 2022, 11, .	0.9	1
6	Cover Feature: Direct Measurements of the Cobaltâ€Thiolate Bonds Strength in Rubredoxin by Singleâ€Molecule Force Spectroscopy (ChemBioChem 12/2022). ChemBioChem, 2022, 23, .	1.3	0
7	Single-Molecule Force Spectroscopy Reveals the Dynamic HgS Coordination Site in the <i>De Novo</i> -Designed Metalloprotein 1± ₃ DIV. Journal of Physical Chemistry Letters, 2022, 13, 5372-5378.	2.1	5
8	<i>Oa</i> AEP1-mediated PNA-protein conjugation enables erasable imaging of membrane proteins. Chemical Communications, 2022, 58, 8448-8451.	2.2	6
9	Pioglitazone Inhibits Metal Cluster Transfer of mitoNEET by Stabilizing the Labile Fe–N Bond Revealed at Single-Bond Level. Journal of Physical Chemistry Letters, 2021, 12, 3860-3867.	2.1	16
10	Highly Dynamic Polynuclear Metal Cluster Revealed in a Single Metallothionein Molecule. Research, 2021, 2021, 9756945.	2.8	9
11	A Fast and Room-temperature Self-healing Thermal Conductive Polymer Composite. Chinese Journal of Polymer Science (English Edition), 2021, 39, 1328-1336.	2.0	20
12	N501Y mutation of spike protein in SARS-CoV-2 strengthens its binding to receptor ACE2. ELife, 2021, 10, .	2.8	262
13	Exploration of Metal-Ligand Coordination Bonds in Proteins by Single-molecule Force Spectroscopy. Chemistry Letters, 2021, 50, 1667-1675.	0.7	8
14	Transforming <i>de novo</i> protein α ₃ D into a mechanically stable protein by zinc binding. Chemical Communications, 2021, 57, 11489-11492.	2.2	7
15	Enzymatic Protein–Protein Conjugation through Internal Site Verified at the Single-Molecule Level. Journal of Physical Chemistry Letters, 2021, 12, 10914-10919.	2.1	9
16	Facile Synthesis of Peptide-Conjugated Gold Nanoclusters with Different Lengths. Nanomaterials, 2021, 11, 2932.	1.9	4
17	Modeling the Hydrolysis of Iron–Sulfur Clusters. Journal of Chemical Information and Modeling, 2020, 60, 653-660.	2.5	12
18	Single-Molecule Force Spectroscopy Reveals that the Fe–N Bond Enables Multiple Rupture Pathways of the 2Fe2S Cluster in a MitoNFFT Monomer, Analytical Chemistry, 2020, 92, 14783-14789	3.2	19

Peng Zheng

#	Article	IF	CITATIONS
19	OaAEP1-Mediated Enzymatic Synthesis and Immobilization of Polymerized Protein for Single-Molecule Force Spectroscopy. Journal of Visualized Experiments, 2020, , .	0.2	7
20	Silver dendrites based electrically conductive composites, towards the application of stretchable conductors. Composites Communications, 2020, 19, 121-126.	3.3	13
21	Verification of sortase for protein conjugation by single-molecule force spectroscopy and molecular dynamics simulations. Chemical Communications, 2020, 56, 3943-3946.	2.2	22
22	Enzymatic Construction of Protein Polymer/Polyprotein Using OaAEP1 and TEV Protease. Bio-protocol, 2020, 10, e3596.	0.2	0
23	A versatile platform for single-molecule enzymology of restriction endonuclease. Journal of Innovative Optical Health Sciences, 2019, 12, 1841002.	0.5	1
24	Multistep Protein Unfolding Scenarios from the Rupture of a Complex Metal Cluster Cd3S9. Scientific Reports, 2019, 9, 10518.	1.6	14
25	Single-Molecule Force Spectroscopy Reveals that Iron–Ligand Bonds Modulate Proteins in Different Modes. Journal of Physical Chemistry Letters, 2019, 10, 5428-5433.	2.1	18
26	Enzymatic biosynthesis and immobilization of polyprotein verified at the single-molecule level. Nature Communications, 2019, 10, 2775.	5.8	77
27	Thermodynamically stable whilst kinetically labile coordination bonds lead to strong and tough self-healing polymers. Nature Communications, 2019, 10, 1164.	5.8	258
28	The unique trimeric assembly of the virulence factor HtrA from Helicobacter pylori occurs via N-terminal domain swapping. Journal of Biological Chemistry, 2019, 294, 7990-8000.	1.6	16
29	Matrix-Independent Highly Conductive Composites for Electrodes and Interconnects in Stretchable Electronics. ACS Applied Materials & Interfaces, 2019, 11, 8567-8575.	4.0	89
30	Autonomous self-healing, self-adhesive, highly conductive composites based on a silver-filled polyborosiloxane/polydimethylsiloxane double-network elastomer. Journal of Materials Chemistry A, 2019, 7, 27278-27288.	5.2	79
31	Dissipative Supramolecular Polymerization Powered by Light. CCS Chemistry, 2019, 1, 335-342.	4.6	93
32	Single molecule force spectroscopy: a new tool for bioinorganic chemistry. Current Opinion in Chemical Biology, 2018, 43, 58-67.	2.8	23
33	The investigation of interface effect on the properties of nanosilica-based underfill. , 2017, , .		1
34	A highly stretchable autonomous self-healing elastomer. Nature Chemistry, 2016, 8, 618-624.	6.6	1,133
35	Mechanical properties of elastomeric proteins studied by single molecule force spectroscopy. Wuli Xuebao/Acta Physica Sinica, 2016, 65, 188703.	0.2	2
36	Force-induced chemical reactions on the metal centre in a single metalloprotein molecule. Nature Communications, 2015, 6, 7569.	5.8	33

Peng Zheng

#	Article	IF	CITATIONS
37	Reversible Unfolding–Refolding of Rubredoxin: A Singleâ€Molecule Force Spectroscopy Study. Angewandte Chemie - International Edition, 2014, 53, 14060-14063.	7.2	23
38	Single Molecule Force Spectroscopy Reveals That Iron Is Released from the Active Site of Rubredoxin by a Stochastic Mechanism. Journal of the American Chemical Society, 2013, 135, 7992-8000.	6.6	28
39	Single Molecule Force Spectroscopy Reveals the Molecular Mechanical Anisotropy of the FeS ₄ Metal Center in Rubredoxin. Journal of the American Chemical Society, 2013, 135, 17783-17792.	6.6	31
40	The Molecular Mechanism Underlying Mechanical Anisotropy of the Protein GB1. Biophysical Journal, 2012, 103, 2361-2368.	0.2	32
41	Hydrogen Bond Strength Modulates the Mechanical Strength of Ferric-Thiolate Bonds in Rubredoxin. Journal of the American Chemical Society, 2012, 134, 4124-4131.	6.6	63
42	Highly Covalent Ferricâ^'Thiolate Bonds Exhibit Surprisingly Low Mechanical Stability. Journal of the American Chemical Society, 2011, 133, 6791-6798.	6.6	68
43	Facile Method of Constructing Polyproteins for Single-Molecule Force Spectroscopy Studies. Langmuir, 2011, 27, 5713-5718.	1.6	30
44	Single Molecule Force Spectroscopy Reveals that Electrostatic Interactions Affect the Mechanical Stability of Proteins. Biophysical Journal, 2011, 100, 1534-1541.	0.2	31
45	Direct Measurements of the Mechanical Stability of Zinc-Thiolate Bonds in Rubredoxin by Single-Molecule Atomic Force Microscopy. Biophysical Journal, 2011, 101, 1467-1473.	0.2	27
46	Syntheses, crystal structures, and electrochemical properties of transition metal complexes with new tetrathiafulvalene-derivatized acetylacetonate ligands. Transition Metal Chemistry, 2008, 33, 767-773.	0.7	7