
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9475544/publications.pdf Version: 2024-02-01

Δημετ Υπριζ

#	Article	IF	CITATIONS
1	Compartmentalization of telomeres through DNA-scaffolded phase separation. Developmental Cell, 2022, 57, 277-290.e9.	7.0	38
2	Structural and functional insight into regulation of kinesin-1 by microtubule-associated protein MAP7. Science, 2022, 375, 326-331.	12.6	53
3	SARS-CoV-2 Delta Variant Decreases Nanobody Binding and ACE2 Blocking Effectivity. Journal of Chemical Information and Modeling, 2022, , .	5.4	5
4	Sorting out microtubule-based transport. Nature Reviews Molecular Cell Biology, 2021, 22, 73-73.	37.0	4
5	Structure and Mechanics of Dynein Motors. Annual Review of Biophysics, 2021, 50, 549-574.	10.0	52
6	Critical Interactions Between the SARS-CoV-2 Spike Glycoprotein and the Human ACE2 Receptor. Journal of Physical Chemistry B, 2021, 125, 5537-5548.	2.6	41
7	Binding Mechanism of Neutralizing Nanobodies Targeting SARS-CoV-2 Spike Glycoprotein. Journal of Chemical Information and Modeling, 2021, 61, 5152-5160.	5.4	11
8	SARS-CoV-2 nucleocapsid protein forms condensates with viral genomic RNA. PLoS Biology, 2021, 19, e3001425.	5.6	71
9	Lis1 activates dynein motility by modulating its pairing with dynactin. Nature Cell Biology, 2020, 22, 570-578.	10.3	86
10	Activation and Regulation of Cytoplasmic Dynein. Trends in Biochemical Sciences, 2020, 45, 440-453.	7.5	53
11	Dynein harnesses active fluctuations of microtubules for faster movement. Nature Physics, 2020, 16, 312-316.	16.7	27
12	The mitotic protein NuMA plays a spindle-independent role in nuclear formation and mechanics. Journal of Cell Biology, 2020, 219, .	5.2	14
13	Cargo adaptors regulate stepping and force generation of mammalian dynein–dynactin. Nature Chemical Biology, 2019, 15, 1093-1101.	8.0	68
14	Rapid and Fully Microfluidic Ebola Virus Detection with CRISPR-Cas13a. ACS Sensors, 2019, 4, 1048-1054.	7.8	215
15	Directionality of dynein is controlled by the angle and length of its stalk. Nature, 2019, 566, 407-410.	27.8	50
16	Kinesin and dynein use distinct mechanisms to bypass obstacles. ELife, 2019, 8, .	6.0	47
17	MotAB-like machinery drives the movement of MreB filaments during bacterial gliding motility. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 2484-2489.	7.1	35
18	Cryo-EM shows how dynactin recruits two dyneins for faster movement. Nature, 2018, 554, 202-206.	27.8	238

2

#	Article	IF	CITATIONS
19	Single-molecule dynein motor mechanics inÂvitro. , 2018, , 112-135.		Ο
20	Multicolor Tracking of Molecular Motors at Nanometer Resolution. Methods in Molecular Biology, 2018, 1805, 139-149.	0.9	0
21	PhotoGate microscopy to track single molecules in crowded environments. Nature Communications, 2017, 8, 13978.	12.8	13
22	Covalent Protein Labeling and Improved Single-Molecule Optical Properties of Aqueous CdSe/CdS Quantum Dots. ACS Nano, 2017, 11, 6773-6781.	14.6	47
23	Live cell imaging of low- and non-repetitive chromosome loci using CRISPR-Cas9. Nature Communications, 2017, 8, 14725.	12.8	199
24	Enhanced proofreading governs CRISPR–Cas9 targeting accuracy. Nature, 2017, 550, 407-410.	27.8	901
25	A conformational checkpoint between DNA binding and cleavage by CRISPR-Cas9. Science Advances, 2017, 3, eaao0027.	10.3	211
26	Dynamics of the IFT machinery at the ciliary tip. ELife, 2017, 6, .	6.0	122
27	Measurement of Force-Dependent Release Rates of Cytoskeletal Motors. Methods in Molecular Biology, 2017, 1486, 469-481.	0.9	Ο
28	The mammalian dynein–dynactin complex is a strong opponent to kinesin in a tug-of-war competition. Nature Cell Biology, 2016, 18, 1018-1024.	10.3	164
29	Shelterin Protects Chromosome Ends by Compacting Telomeric Chromatin. Cell, 2016, 164, 735-746.	28.9	138
30	The polarity of myxobacterial gliding is regulated by direct interactions between the gliding motors and the Ras homolog MglA. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, E186-93.	7.1	23
31	Kinesin's Front Head Is Gated by the Backward Orientation of Its Neck Linker. Cell Reports, 2015, 10, 1967-1973.	6.4	49
32	Tracking Movements of the Microtubule Motors Kinesin and Dynein Using Total Internal Reflection Fluorescence Microscopy. Cold Spring Harbor Protocols, 2015, 2015, pdb.prot086355.	0.3	9
33	Total Internal Reflection Fluorescence Microscopy. Cold Spring Harbor Protocols, 2015, 2015, pdb.top086348.	0.3	10
34	The AAA3 domain of cytoplasmic dynein acts as a switch to facilitate microtubule release. Nature Structural and Molecular Biology, 2015, 22, 73-80.	8.2	75
35	Single-molecule imaging of telomerase reverse transcriptase in human telomerase holoenzyme and minimal RNP complexes. ELife, 2015, 4, .	6.0	31
36	Cytoplasmic dynein transports cargos via load-sharing between the heads. Nature Communications, 2014, 5, 5544.	12.8	52

#	Article	IF	CITATIONS
37	Fluorescence Tracking of Motor Proteins In Vitro. Exs, 2014, 105, 211-234.	1.4	2
38	G-quadruplex formation in telomeres enhances POT1/TPP1 protection against RPA binding. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 2990-2995.	7.1	130
39	Tension on the linker gates the ATP-dependent release of dynein from microtubules. Nature Communications, 2014, 5, 4587.	12.8	85
40	Processive cytoskeletal motors studied with singleâ€molecule fluorescence techniques. FEBS Letters, 2014, 588, 3520-3525.	2.8	19
41	Bidirectional helical motility of cytoplasmic dynein around microtubules. ELife, 2014, 3, e03205.	6.0	66
42	Flagella stator homologs function as motors for myxobacterial gliding motility by moving in helical trajectories. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, E1508-13.	7.1	72
43	Intraflagellar transport drives flagellar surface motility. ELife, 2013, 2, e00744.	6.0	85
44	Cytoplasmic Dynein Moves Through Uncoordinated Stepping of the AAA+ Ring Domains. Science, 2012, 335, 221-225.	12.6	187
45	Why kinesin is so processive. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 12717-12722.	7.1	85
46	Single-Molecule Fluorescent Particle Tracking. , 2009, , 1.		1
47	Intramolecular Strain Coordinates Kinesin Stepping Behavior along Microtubules. Cell, 2008, 134, 1030-1041.	28.9	276
48	Extracting Dwell Time Sequences from Processive Molecular Motor Data. Biophysical Journal, 2006, 91, 3135-3150.	0.5	30
49	Maximum Likelihood Estimation of Molecular Motor Kinetics from Staircase Dwell-Time Sequences. Biophysical Journal, 2006, 91, 1156-1168.	0.5	51
50	Single-Molecule Analysis of Dynein Processivity and Stepping Behavior. Cell, 2006, 126, 335-348.	28.9	571
51	GE PRIZE WINNER: How Molecular Motors Move. Science, 2006, 311, 792-793.	12.6	11
52	Kinesin: walking, crawling or sliding along?. Trends in Cell Biology, 2005, 15, 112-120.	7.9	83
53	Step-Size Is Determined by Neck Length in Myosin Vâ€. Biochemistry, 2005, 44, 16203-16210.	2.5	91
54	Fluorescence Imaging with One Nanometer Accuracy:  Application to Molecular Motors. Accounts of Chemical Research, 2005, 38, 574-582.	15.6	324

#	Article	IF	CITATIONS
55	Myosin VI Steps via a Hand-over-Hand Mechanism with Its Lever Arm Undergoing Fluctuations when Attached to Actin. Journal of Biological Chemistry, 2004, 279, 37223-37226.	3.4	141
56	Kinesin Walks Hand-Over-Hand. Science, 2004, 303, 676-678.	12.6	865
57	Myosin V Walks Hand-Over-Hand: Single Fluorophore Imaging with 1.5-nm Localization. Science, 2003, 300, 2061-2065.	12.6	1,752