Ryo Futahashi

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9475318/publications.pdf

Version: 2024-02-01

172207 138251 3,753 63 29 58 citations h-index g-index papers 67 67 67 3511 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	RNA interference in Lepidoptera: An overview of successful and unsuccessful studies and implications for experimental design. Journal of Insect Physiology, 2011, 57, 231-245.	0.9	729
2	The genome of a lepidopteran model insect, the silkworm Bombyx mori. Insect Biochemistry and Molecular Biology, 2008, 38, 1036-1045.	1.2	592
3	Genome-wide identification of cuticular protein genes in the silkworm, Bombyx mori. Insect Biochemistry and Molecular Biology, 2008, 38, 1138-1146.	1.2	163
4	Extraordinary diversity of visual opsin genes in dragonflies. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, E1247-56.	3.3	151
5	Small genome symbiont underlies cuticle hardness in beetles. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, E8382-E8391.	3.3	127
6	<i>yellow</i> and <i>ebony</i> Are the Responsible Genes for the Larval Color Mutants of the Silkworm <i>Bombyx mori</i> Genetics, 2008, 180, 1995-2005.	1.2	126
7	Melanin-synthesis enzymes coregulate stage-specific larval cuticular markings in the swallowtail butterfly, Papilio xuthus. Development Genes and Evolution, 2005, 215, 519-529.	0.4	114
8	Gut symbiotic bacteria stimulate insect growth and egg production by modulating hexamerin and vitellogenin gene expression. Developmental and Comparative Immunology, 2017, 69, 12-22.	1.0	97
9	Repression of tyrosine hydroxylase is responsible for the sex-linked chocolate mutation of the silkworm, <i>Bombyx mori</i> . Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 12980-12985.	3.3	96
10	Caterpillar color patterns are determined by a twoâ€phase melanin gene prepatterning process: new evidence from <i>tan</i> and <i>laccase2</i> . Evolution & Development, 2010, 12, 157-167.	1.1	94
11	Large Scale Full-Length cDNA Sequencing Reveals a Unique Genomic Landscape in a Lepidopteran Model Insect, <i>Bombyx mori</i> . G3: Genes, Genomes, Genetics, 2013, 3, 1481-1492.	0.8	87
12	Laccase2 is required for cuticular pigmentation in stinkbugs. Insect Biochemistry and Molecular Biology, 2011, 41, 191-196.	1.2	82
13	Functional crosstalk across IMD and Toll pathways: insight into the evolution of incomplete immune cascades. Proceedings of the Royal Society B: Biological Sciences, 2019, 286, 20182207.	1.2	78
14	Odonata (dragonflies and damselflies) as a bridge between ecology and evolutionary genomics. Frontiers in Zoology, 2016, 13, 46.	0.9	75
15	Redox alters yellow dragonflies into red. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 12626-12631.	3.3	71
16	Identification and characterization of the telomerase reverse transcriptase of Bombyx mori (silkworm) and Tribolium castaneum (flour beetle). Gene, 2006, 376, 281-289.	1.0	68
17	Juvenile Hormone Regulates Butterfly Larval Pattern Switches. Science, 2008, 319, 1061-1061.	6.0	68
18	Gene Expression in Gut Symbiotic Organ of Stinkbug Affected by Extracellular Bacterial Symbiont. PLoS ONE, 2013, 8, e64557.	1.1	61

#	Article	IF	CITATIONS
19	Regulation of 20-hydroxyecdysone on the larval pigmentation and the expression of melanin synthesis enzymes and yellow gene of the swallowtail butterfly, Papilio xuthus. Insect Biochemistry and Molecular Biology, 2007, 37, 855-864.	1.2	58
20	A visible dominant marker for insect transgenesis. Nature Communications, 2012, 3, 1295.	5.8	57
21	Comprehensive microarray-based analysis for stage-specific larval camouflage pattern-associated genes in the swallowtail butterfly, Papilio xuthus. BMC Biology, 2012, 10, 46.	1.7	56
22	Molting-associated suppression of symbiont population and up-regulation of antimicrobial activity in the midgut symbiotic organ of the Riptortus–Burkholderia symbiosis. Developmental and Comparative Immunology, 2014, 43, 10-14.	1.0	53
23	Comparative cytology, physiology and transcriptomics of <i>Burkholderia insecticola</i> in symbiosis with the bean bug <i>Riptortus pedestris</i> and in culture. ISME Journal, 2019, 13, 1469-1483.	4.4	53
24	Positional cloning of a Bombyx pink-eyed white egg locus reveals the major role of cardinal in ommochrome synthesis. Heredity, 2016, 116, 135-145.	1.2	50
25	Speciesâ€specific coordinated gene expression and <i>trans</i> à€regulation of larval color pattern in three swallowtail butterflies. Evolution & Development, 2010, 12, 305-314.	1.1	41
26	Catalogue of epidermal genes: Genes expressed in the epidermis during larval molt of the silkworm Bombyx mori. BMC Genomics, 2008, 9, 396.	1.2	40
27	Color vision and color formation in dragonflies. Current Opinion in Insect Science, 2016, 17, 32-39.	2.2	39
28	A Novel, Extremely Elongated, and Endocellular Bacterial Symbiont Supports Cuticle Formation of a Grain Pest Beetle. MBio, 2017, 8, .	1.8	34
29	Expression of one isoform of GTP cyclohydrolase I coincides with the larval black markings of the swallowtail butterfly, Papilio xuthus. Insect Biochemistry and Molecular Biology, 2006, 36, 63-70.	1.2	32
30	Identification of stage-specific larval camouflage associated genes in the swallowtail butterfly, Papilio xuthus. Development Genes and Evolution, 2008, 218, 491-504.	0.4	31
31	Positional Cloning of a Bombyx Wingless Locus <i>flui^gellos</i> (<i>fl</i>) Reveals a Crucial Role for <i>fringe</i> That Is Specific for Wing Morphogenesis. Genetics, 2008, 179, 875-885.	1.2	31
32	Disturbed Population Genetics: Suspected Introgressive Hybridization between Two Mnais Damselfly Species (Odonata). Zoological Science, 2005, 22, 869-881.	0.3	25
33	Electroporation-mediated RNA interference reveals a role of the multicopper oxidase 2 gene in dragonfly cuticular pigmentation. Applied Entomology and Zoology, 2017, 52, 379-387.	0.6	22
34	Pigments in Insects., 2021,, 3-43.		17
35	Novel gene encoding a unique luciferase from the fireworm Odontsyllis undecimdonta. Scientific Reports, 2018, 8, 12789.	1.6	16
36	Pigmentation and color pattern diversity in Odonata. Current Opinion in Genetics and Development, 2021, 69, 14-20.	1.5	15

#	Article	IF	Citations
37	Molecular basis of wax-based color change and UV reflection in dragonflies. ELife, 2019, 8, .	2.8	15
38	Molecular mechanisms underlying metamorphosis in the most-ancestral winged insect. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119 , .	3.3	14
39	Modulation of the ecdysteroid-induced cell death by juvenile hormone during pupal wing development of Lepidoptera. Archives of Insect Biochemistry and Physiology, 2007, 65, 152-163.	0.6	13
40	Molecular Mechanisms Underlying Color Vision and Color Formation in Dragonflies., 2017,, 303-321.		13
41	Diversity and function of multicopper oxidase genes in the stinkbug Plautia stali. Scientific Reports, 2020, 10, 3464.	1.6	13
42	The effect of the <i>doublesex </i> gene in body colour masculinization of the damselfly <i>lschnura senegalensis </i> Biology Letters, 2021, 17, 20200761.	1.0	13
43	Comparative transcriptomics of the bacteriome and the spermalege of the bedbug Cimex lectularius (Hemiptera: Cimicidae). Applied Entomology and Zoology, 2012, 47, 233-243.	0.6	12
44	Cloning and Characterization of Luciferase from a Fijian Luminous Click Beetle. Photochemistry and Photobiology, 2013, 89, 1163-1169.	1.3	11
45	Laboratory Rearing System for Ischnura senegalensis (Insecta: Odonata) Enables Detailed Description of Larval Development and Morphogenesis in Dragonfly. Zoological Science, 2017, 34, 386.	0.3	11
46	Luciferase gene of a Caribbean fireworm (Syllidae) from Puerto Rico. Scientific Reports, 2019, 9, 13015.	1.6	11
47	A novel target-specific gene delivery system combining baculovirus and sequence-specific long interspersed nuclear elements. Virus Research, 2007, 127, 49-60.	1.1	10
48	Interspecific crossing between blueâ€tailed damselflies <scp><i>Ischnura elegans</i></scp> and <scp><i>I. senegalensis</i></scp> in the laboratory. Entomological Science, 2020, 23, 165-172.	0.3	9
49	Effectiveness of orally-delivered double-stranded RNA on gene silencing in the stinkbug Plautia stali. PLoS ONE, 2021, 16, e0245081.	1.1	9
50	Wolbachia-driven selective sweep in a range expanding insect species. Bmc Ecology and Evolution, 2021, 21, 181.	0.7	9
51	Diversity of UV Reflection Patterns in Odonata. Frontiers in Ecology and Evolution, 2020, 8, .	1.1	8
52	Tibetan Firefly Luciferase with Low Temperature Adaptation. Photochemistry and Photobiology, 2017, 93, 466-472.	1.3	7
53	Electroporation-mediated RNA Interference Method in Odonata. Journal of Visualized Experiments, 2021, , .	0.2	4
54	Mutations in a \hat{l}^2 -group of solute carrier gene are responsible for egg and eye coloration of the brown egg 4 (b-4) mutant in the silkworm, Bombyx mori. Insect Biochemistry and Molecular Biology, 2021, 137, 103624.	1.2	4

#	Article	IF	Citations
55	The genus Planaeschna McLachlan, 1895 and its subgroupings in Vietnam, with descriptions of three new species (Odonata: Aeshnidae). Zootaxa, 2021, 5027, 1-35.	0.2	3
56	Whole-Mount In Situ Hybridization of Sectioned Tissues of Species Hybrids to Detect Cis-regulatory Changes in Gene Expression Pattern. Methods in Molecular Biology, 2012, 772, 319-328.	0.4	3
57	Diversity of melanin synthesis genes in insects. Advances in Insect Physiology, 2022, , 339-376.	1.1	3
58	Editorial overview: Molecular physiology: molecular basis of insect colors and patterns. Current Opinion in Insect Science, 2016, 17, vi-viii.	2.2	2
59	Comprehensive comparative morphology and developmental staging of final instar larvae toward metamorphosis in the insect order Odonata. Scientific Reports, 2021, 11, 5164.	1.6	2
60	Intraspecific nucleotide polymorphisms in seven complete sequences of mitochondrial DNA of the luminous ostracod, Vargula hilgendorfii (Crustacea, Ostracoda). Gene Reports, 2021, 23, 101074.	0.4	2
61	Title is missing!. Kagaku To Seibutsu, 2003, 41, 461-463.	0.0	O
62	Discovery of a third species of the genus Noguchiphaea Asahina, 1976 – Noguchiphaea laotica sp. n. from Laos (Odonata: Calopterygidae). International Journal of Odonatology, 2019, 22, 59-71.	0.5	0
63	Molecular bases underlying the diversity of color pattern and color vision in dragonflies. , 2016, , .		O