
Lihong Shi

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9475167/publications.pdf Version: 2024-02-01

LIHONC SHI

#	Article	IF	CITATIONS
1	Dual Photoluminescence Emission Carbon Dots for Ratiometric Fluorescent GSH Sensing and Cancer Cell Recognition. ACS Applied Materials & Interfaces, 2020, 12, 18250-18257.	8.0	118
2	Folic acid-conjugated carbon dots as green fluorescent probes based on cellular targeting imaging for recognizing cancer cells. RSC Advances, 2017, 7, 42159-42167.	3.6	111
3	Controllable synthesis of green and blue fluorescent carbon nanodots for pH and Cu 2+ sensing in living cells. Biosensors and Bioelectronics, 2016, 77, 598-602.	10.1	104
4	Naked oats-derived dual-emission carbon nanodots for ratiometric sensing and cellular imaging. Sensors and Actuators B: Chemical, 2015, 210, 533-541.	7.8	97
5	Facile and eco-friendly synthesis of green fluorescent carbon nanodots for applications in bioimaging, patterning and staining. Nanoscale, 2015, 7, 7394-7401.	5.6	81
6	Red fluorescent carbon dots for tetracycline antibiotics and pH discrimination from aggregation-induced emission mechanism. Sensors and Actuators B: Chemical, 2021, 332, 129513.	7.8	79
7	The synthesis of high bright silver nanoclusters with aggregation-induced emission for detection of tetracycline. Sensors and Actuators B: Chemical, 2021, 326, 129009.	7.8	77
8	Green and facile synthesis of nitrogen-doped carbon nanodots for multicolor cellular imaging and Co2+ sensing in living cells. Sensors and Actuators B: Chemical, 2016, 235, 179-187.	7.8	76
9	Green synthesis of carbon nanodots from cotton for multicolor imaging, patterning, and sensing. Sensors and Actuators B: Chemical, 2015, 221, 769-776.	7.8	74
10	Excitation-independent yellow-fluorescent nitrogen-doped carbon nanodots for biological imaging and paper-based sensing. Sensors and Actuators B: Chemical, 2017, 251, 234-241.	7.8	66
11	Eco-friendly synthesis of nitrogen-doped carbon nanodots from wool for multicolor cell imaging, patterning, and biosensing. Sensors and Actuators B: Chemical, 2016, 235, 316-324.	7.8	51
12	Aggregation/assembly induced emission based on silk fibroin-templated fluorescent copper nanoclusters for "turn-on―detection of S2â^'. Sensors and Actuators B: Chemical, 2019, 279, 361-368.	7.8	49
13	Bright far-red/near-infrared gold nanoclusters for highly selective and ultra-sensitive detection of Hg2+. Sensors and Actuators B: Chemical, 2017, 238, 683-692.	7.8	42
14	A turn-on reactive fluorescent probe for Hg2+ in 100% aqueous solution. Talanta, 2019, 197, 218-224.	5.5	41
15	Facile, rapid one-pot synthesis of multifunctional gold nanoclusters for cell imaging, hydrogen sulfide detection and pH sensing. Talanta, 2019, 197, 1-11.	5.5	33
16	Lysosome-targeted carbon dots for colorimetric and fluorescent dual mode detection of iron ion, in vitro and in vivo imaging. Talanta, 2021, 232, 122423.	5.5	33
17	A reversible fluorescent pH-sensing system based on the one-pot synthesis of natural silk fibroin-capped copper nanoclusters. Journal of Materials Chemistry C, 2016, 4, 3540-3545.	5.5	32
18	Concentration-dependent multicolor fluorescent carbon dots for colorimetric and fluorescent bimodal detections of Fe ³⁺ and <scp>l</scp> -ascorbic acid. Analytical Methods, 2019, 11, 669-676.	2.7	31

Lihong Shi

#	Article	IF	CITATIONS
19	Green-fluorescent nitrogen-doped carbon nanodots for biological imaging and paper-based sensing. Analytical Methods, 2017, 9, 2197-2204.	2.7	29
20	"On-off-on―detection of Fe3+ and Fâ^', biological imaging, and its logic gate operation based on excitation-independent blue-fluorescent carbon dots. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2020, 227, 117716.	3.9	29
21	Hg ²⁺ detection, pH sensing and cell imaging based on bright blue-fluorescent N-doped carbon dots. Analyst, The, 2020, 145, 8030-8037.	3.5	29
22	Ratiometric fluorescent carbon dots for enantioselective sensing of L-lysine and pH discrimination in vivo and in vitro. Sensors and Actuators B: Chemical, 2022, 362, 131792.	7.8	29
23	Tricolor emission carbon dots for label-free ratiometric fluorescent and colorimetric recognition of Al3+ and pyrophosphate ion and cellular imaging. Sensors and Actuators B: Chemical, 2021, 345, 130375.	7.8	28
24	lron ion sensing and in vitro and in vivo imaging based on bright blue-fluorescent carbon dots. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2021, 260, 119964.	3.9	26
25	Excitation-independent hollow orange-fluorescent carbon nanoparticles for pH sensing in aqueous solution and living cells. Talanta, 2019, 196, 109-116.	5.5	23
26	Fe ³⁺ detection, bioimaging, and patterning based on bright blue-fluorescent N-doped carbon dots. Analyst, The, 2020, 145, 5450-5457.	3.5	21
27	Recent Advances in Carbon Nanodots: Properties and Applications in Cancer Diagnosis and Treatment. Journal of Analysis and Testing, 2019, 3, 37-49.	5.1	20
28	The design of hydrogen sulfide fluorescence probe based on dual nucleophilic reaction and its application for bioimaging. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2019, 207, 150-155.	3.9	20
29	Substituent effect on the acid-induced isomerization of spiropyran compounds. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2018, 202, 13-17.	3.9	19
30	Rapid sonochemical synthesis of copper nanoclusters with red fluorescence for highly sensitive detection of silver ions. Microchemical Journal, 2022, 178, 107370.	4.5	19
31	Lysosome-targeted red-fluorescent carbon dots for turn-on detection of permanganate and pH in vivo and in vitro. Sensors and Actuators B: Chemical, 2021, 349, 130774.	7.8	18
32	A turn-on fluorescence probe for hydrogen sulfide in absolute aqueous solution. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2020, 233, 118156.	3.9	17
33	Development of a piperazinyl-NBD-based fluorescent probe and its dual-channel detection for hydrogen sulfide. Analyst, The, 2021, 146, 2138-2143.	3.5	16
34	Co ²⁺ detection, cell imaging, and temperature sensing based on excitation-independent green-fluorescent N-doped carbon dots. RSC Advances, 2019, 9, 41361-41367.	3.6	15
35	Smilax China-derived yellow-fluorescent carbon dots for temperature sensing, Cu ²⁺ detection and cell imaging. Analyst, The, 2020, 145, 2176-2183.	3.5	14
36	Sulforaphane-Conjugated Carbon Dots: A Versatile Nanosystem for Targeted Imaging and Inhibition of EGFR-Overexpressing Cancer Cells. ACS Biomaterials Science and Engineering, 2019, 5, 4692-4699.	5.2	13

LIHONG SHI

#	Article	IF	CITATIONS
37	Orange emissive carbon nanodots for fluorescent and colorimetric bimodal discrimination of Cu ²⁺ and pH. Analyst, The, 2021, 146, 1907-1914.	3.5	12
38	Dual-excitation and dual-emission carbon dots for Fe ³⁺ detection, temperature sensing, and lysosome targeting. Analytical Methods, 2021, 13, 4246-4255.	2.7	10
39	Green Synthesis of Gold Nanoparticles with Pectinase: a Highly Selective and Ultra-Sensitive Colorimetric Assay for Mg2+. Plasmonics, 2017, 12, 717-727.	3.4	9
40	Fluorescent carbon dots with real-time nucleolus-monitoring capability for gene delivery and biosensing of NO2– and pH. Applied Surface Science, 2022, 599, 153902.	6.1	5
41	Lysosome targeting, Cr(<scp>vi</scp>) and <scp>l</scp> -AA sensing, and cell imaging based on N-doped blue-fluorescence carbon dots. Analytical Methods, 2021, 13, 3561-3568.	2.7	4