Sophie Barrau

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9474971/publications.pdf

Version: 2024-02-01

331538 345118 2,414 37 21 36 citations h-index g-index papers 37 37 37 3696 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Influence of photooxidation on ionic reversible interactions of ionic poly(ether urethane)/silica hybrids. Polymer Degradation and Stability, 2022, 197, 109872.	2.7	2
2	RAFT polymerisation of trifluoroethylene: the importance of understanding reverse additions. Polymer Chemistry, 2021, 12, 2271-2281.	1.9	5
3	In-situ SAXS/WAXS investigations of ureidopyrimidinone functionalized semi-crystalline poly(ethylene-co-butylene) supramolecular polymers. Polymer, 2021, 228, 123875.	1.8	8
4	Solvent-Free Design of Biobased Non-isocyanate Polyurethanes with Ferroelectric Properties. ACS Sustainable Chemistry and Engineering, 2021, 9, 14946-14958.	3.2	11
5	Mastering Superior Performance Origins of Ionic Polyurethane/Silica Hybrids. ACS Applied Polymer Materials, 2021, 3, 6684-6693.	2.0	6
6	Probing the local piezoelectric behavior in stretched barium titanate/poly(vinylidene fluoride) nanocomposites. Composites Science and Technology, 2020, 186, 107914.	3.8	22
7	Thermoelectric properties of bulk multi-walled carbon nanotube - poly(vinylidene fluoride) nanocomposites: Study of the structure/property relationships. Synthetic Metals, 2020, 269, 116525.	2.1	8
8	Formulation of eco-friendly sol–gel coatings to flame-retard flexible polyurethane foam. Green Materials, 2020, 8, 139-149.	1.1	5
9	Mechanistic insights on ultra-tough polylactide-based ionic nanocomposites. Composites Science and Technology, 2020, 191, 108075.	3.8	13
10	Synthesis of lead-free (Bi _{0,5} Na _{0,5})TiO ₃ thin film by RF magnetron sputtering: Impact of Na on the properties of film. Ferroelectrics, 2020, 556, 79-86.	0.3	8
11	On the Nanoscale Mapping of the Mechanical and Piezoelectric Properties of Poly (L-Lactic Acid) Electrospun Nanofibers. Applied Sciences (Switzerland), 2020, 10, 652.	1.3	22
12	Excited-State Dynamics of Dithienylethenes Functionalized for Self-Supramolecular Assembly. Journal of Physical Chemistry A, 2018, 122, 3572-3582.	1.1	10
13	Nanoscale Investigations of \hat{I}_{\pm} - and \hat{I}_{\pm} -Crystal Phases in PVDF-Based Nanocomposites. ACS Applied Materials & amp; Interfaces, 2018, 10, 13092-13099.	4.0	87
14	Impact of carbon nanotube prelocalization on the ultra-low electrical percolation threshold and on the mechanical behavior of sintered UHMWPE-based nanocomposites. Polymer, 2017, 111, 204-213.	1.8	38
15	Thermally reversible crosslinked copolymers: Solution and bulk behavior. Polymer, 2017, 117, 342-353.	1.8	8
16	Influence of nitrodopamine-functionalized barium titanate content on the piezoelectric response of poly(vinylidene fluoride) based polymer-ceramic composites. Composites Science and Technology, 2017, 147, 16-21.	3.8	38
17	Shape-Memory Behavior of Polylactide/Silica Ionic Hybrids. Macromolecules, 2017, 50, 2896-2905.	2.2	43
18	Fire retardant sol–gel coatings for flexible polyurethane foams. RSC Advances, 2016, 6, 28543-28554.	1.7	19

#	Article	IF	CITATIONS
19	In situ SAXS/WAXS investigation of the structural evolution of poly(vinylidene fluoride) upon uniaxial stretching. Polymer, 2016, 84, 148-157.	1.8	39
20	Designing Multiple-Shape Memory Polymers with Miscible Polymer Blends: Evidence and Origins of a Triple-Shape Memory Effect for Miscible PLLA/PMMA Blends. Macromolecules, 2014, 47, 6791-6803.	2.2	147
21	Crystallization Behavior of Carbon Nanotubeâ^'Polylactide Nanocomposites. Macromolecules, 2011, 44, 6496-6502.	2,2	197
22	Inverted and transparent polymer solar cells prepared with vacuum-free processing. Solar Energy Materials and Solar Cells, 2009, 93, 497-500.	3.0	148
23	Nanomorphology of Bulk Heterojunction Organic Solar Cells in 2D and 3D Correlated to Photovoltaic Performance. Macromolecules, 2009, 42, 4646-4650.	2.2	45
24	Synthesis, Characterization, and Devices of a Series of Alternating Copolymers for Solar Cells. Chemistry of Materials, 2009, 21, 3491-3502.	3.2	118
25	Physical properties of CNTs-polyepoxy nanocomposites. Influence of CNTs surface treatments. Revue Internationale De Génie électrique, 2009, 12, 423-431.	0.0	0
26	High photovoltage achieved in low band gap polymer solar cells by adjusting energy levels of a polymer with the LUMOs of fullerene derivatives. Journal of Materials Chemistry, 2008, 18, 5468.	6.7	137
27	Self-Assembling of Novel Fullerene-Grafted Donor–Acceptor Rodâ^'Coil Block Copolymers. Macromolecules, 2008, 41, 2701-2710.	2.2	113
28	Investigation on polymer anode design for flexible polymer solar cells. Applied Physics Letters, 2008, 92, 233308.	1.5	142
29	Integration of amyloid nanowires in organic solar cells. Applied Physics Letters, 2008, 93, 023307.	1.5	44
30	Novel Brush-Type Copolymers Bearing Thiophene Backbone and Side Chain Quinoline Blocks. Synthesis and Their Use as a Compatibilizer in Thiopheneâ ⁻² Quinoline Polymer Blends. Macromolecules, 2007, 40, 921-927.	2.2	64
31	Cathodic electropolymerization on the surface of carbon nanotubes. Journal of Electroanalytical Chemistry, 2006, 589, 46-51.	1.9	7
32	Laser Induced Modifications of Carbon Nanotube Composite Surfaces. Japanese Journal of Applied Physics, 2006, 45, 7776-7779.	0.8	1
33	Glass Transition Temperature Depression at the Percolation Threshold in Carbon Nanotube-Epoxy Resin and Polypyrrole-Epoxy Resin Composites. Macromolecular Rapid Communications, 2005, 26, 390-394.	2.0	87
34	Spectroscopic detection of carbon nanotube interaction with amphiphilic molecules in epoxy resin composites. Journal of Applied Physics, 2005, 97, 034303.	1.1	26
35	Similarities in the Raman RBM and D bands in double-wall carbon nanotubes. Physical Review B, 2005, 72, .	1.1	13
36	DC and AC Conductivity of Carbon Nanotubesâ^'Polyepoxy Composites. Macromolecules, 2003, 36, 5187-5194.	2.2	557

#	Article	IF	CITATIONS
37	Effect of Palmitic Acid on the Electrical Conductivity of Carbon Nanotubesâ^'Epoxy Resin Composites. Macromolecules, 2003, 36, 9678-9680.	2.2	176