Weixin Zhang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/947480/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Single-Crystalline Scroll-Type Nanotube Arrays of Copper Hydroxide Synthesized at Room Temperature. Advanced Materials, 2003, 15, 822-825.	11.1	336
2	Synthesis of Cu(OH)2and CuO Nanoribbon Arrays on a Copper Surface. Langmuir, 2003, 19, 5898-5903.	1.6	233
3	Controllable preparation of multishelled NiO hollow nanospheres via layer-by-layer self-assembly for supercapacitor application. Journal of Power Sources, 2014, 246, 24-31.	4.0	232
4	Controlled Reactions on a Copper Surface:  Synthesis and Characterization of Nanostructured Copper Compound Films. Inorganic Chemistry, 2003, 42, 5005-5014.	1.9	202
5	Solution Phase Synthesis of Cu(OH)2Nanoribbons by Coordination Self-Assembly Using Cu2S Nanowires as Precursors. Nano Letters, 2002, 2, 1397-1401.	4.5	192
6	Large-scale synthesis of β-MnO2 nanorods and their rapid and efficient catalytic oxidation of methylene blue dye. Catalysis Communications, 2006, 7, 408-412.	1.6	183
7	Controlled synthesis of Mn3O4 nanocrystallites and MnOOH nanorods by a solvothermal method. Journal of Crystal Growth, 2004, 263, 394-399.	0.7	172
8	Nanorods of manganese oxides: Synthesis, characterization and catalytic application. Journal of Solid State Chemistry, 2006, 179, 679-684.	1.4	172
9	Temperature dependence of field emission from cupric oxide nanobelt films. Applied Physics Letters, 2003, 83, 746-748.	1.5	165
10	An effective etching-induced coating strategy to shield LiNi0.8Co0.1Mn0.1O2 electrode materials by LiAlO2. Journal of Power Sources, 2019, 412, 246-254.	4.0	144
11	A novel process to recycle spent LiFePO4 for synthesizing LiFePO4/C hierarchical microflowers. Electrochimica Acta, 2016, 190, 134-140.	2.6	140
12	Large‣cale Synthesis of Long Crystalline Cu _{2â€x} Se Nanowire Bundles by Waterâ€Evaporationâ€Induced Selfâ€Assembly and Their Application in Gas Sensing. Advanced Functional Materials, 2009, 19, 1759-1766.	7.8	137
13	Controlled synthesis of CuO nanostructures by a simple solution route. Journal of Solid State Chemistry, 2007, 180, 1390-1396.	1.4	127
14	Synthesis and Characterization of Uniform Arrays of Copper Sulfide Nanorods Coated with Nanolayers of Polypyrrole. Langmuir, 2003, 19, 4420-4426.	1.6	110
15	Large-Scale Synthesis and Phase Transformation of CuSe, CuInSe ₂ , and CuInSe ₂ /CuInS ₂ Core/Shell Nanowire Bundles. ACS Nano, 2010, 4, 1845-1850.	7.3	105
16	Hierarchical Selfâ€assembly of Microscale Cogâ€like Superstructures for Enhanced Performance in Lithiumâ€lon Batteries. Advanced Functional Materials, 2011, 21, 3516-3523.	7.8	98
17	In Situ Fabrication of Inorganic Nanowire Arrays Grown from and Aligned on Metal Substrates. Accounts of Chemical Research, 2009, 42, 1617-1627.	7.6	95
18	Weak Ferromagnetism and Dynamic Magnetic Behavior in a Single End-to-End Azide-Bridged Nickel(II) Chain. Advanced Materials, 2006, 18, 2852-2856.	11.1	92

#	Article	IF	CITATIONS
19	A General and Mild Approach to Controllable Preparation of Manganeseâ€Based Micro―and Nanostructured Bars for High Performance Lithiumâ€ŀon Batteries. Angewandte Chemie - International Edition, 2016, 55, 3667-3671.	7.2	89
20	Nanostructured Li3V2(PO4)3 cathode supported on reduced graphene oxide for lithium-ion batteries. Journal of Power Sources, 2013, 239, 475-482.	4.0	87
21	Hydrothermal synthesis of morphology-controlled LiFePO4 cathode material for lithium-ion batteries. Journal of Power Sources, 2012, 220, 317-323.	4.0	82
22	Growth of novel nanostructured copper oxide (CuO) films on copper foil. Journal of Crystal Growth, 2006, 291, 479-484.	0.7	79
23	Stepwise co-precipitation to synthesize LiNi1/3Co1/3Mn1/3O2 one-dimensional hierarchical structure for lithium ion batteries. Journal of Power Sources, 2014, 272, 144-151.	4.0	78
24	Replacement/Etching Route to ZnSe Nanotube Arrays and Their Enhanced Photocatalytic Activities. Industrial & Engineering Chemistry Research, 2012, 51, 4208-4214.	1.8	75
25	Aluminum and fluorine co-doping for promotion of stability and safety of lithium-rich layered cathode material. Electrochimica Acta, 2017, 236, 171-179.	2.6	75
26	One-Pot Room Temperature Synthesis of Cu ₂ O/Ag Composite Nanospheres with Enhanced Visible-Light-Driven Photocatalytic Performance. Industrial & Engineering Chemistry Research, 2014, 53, 16316-16323.	1.8	74
27	Electric field driven de-lithiation: A strategy towards comprehensive and efficient recycling of electrode materials from spent lithium ion batteries. Applied Catalysis B: Environmental, 2021, 283, 119634.	10.8	74
28	Ostensibly phosphatized NiAl LDHs nanoflowers with remarkable charge storage property for asymmetric supercapacitors. Journal of Colloid and Interface Science, 2020, 577, 115-126.	5.0	68
29	Synthesis of nanocrystalline Ag2S in aqueous solution. Solid State Ionics, 2000, 130, 111-114.	1.3	65
30	Engineering superhydrophilic/superaerophobic hierarchical structures of Co-CH@NiFe-LDH/NF to boost the oxygen evolution reaction. Chemical Engineering Journal, 2021, 422, 130123.	6.6	62
31	Promotion of H2O2 decomposition activity over β-MnO2 nanorod catalysts. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2007, 304, 60-66.	2.3	61
32	Low temperature synthesis of nanocrystalline Mn3O4 by a solvothermal method. Solid State Ionics, 1999, 117, 331-335.	1.3	60
33	An inward replacement/etching route to synthesize double-walled Cu7S4 nanoboxes and their enhanced performances in ammonia gas sensing. Physical Chemistry Chemical Physics, 2009, 11, 6263.	1.3	59
34	Synthesis of porous and hollow microspheres of nanocrystalline Mn2O3. Chemical Physics Letters, 2006, 418, 46-49.	1.2	58
35	Enhanced performance of LiFePO4 through hydrothermal synthesis coupled with carbon coating and cupric ion doping. Electrochimica Acta, 2011, 56, 5667-5672.	2.6	56
36	A new lithium-ion battery: CuO nanorod array anode versus spinel LiNi0.5Mn1.5O4 cathode. Journal of Power Sources, 2015, 273, 561-565.	4.0	49

#	Article	IF	CITATIONS
37	A hydrothermal synthesis of orthorhombic nanocrystalline cobalt diselenide CoSe2. Materials Research Bulletin, 2000, 35, 2403-2408.	2.7	48
38	Lithography inside Cu(OH)2 Nanorods:  A General Route to Controllable Synthesis of the Arrays of Copper Chalcogenide Nanotubes with Double Walls. Inorganic Chemistry, 2008, 47, 699-704.	1.9	48
39	A phosphatized NiCo LDH 1D dendritic electrode for high energy asymmetric supercapacitors. Dalton Transactions, 2019, 48, 14853-14863.	1.6	48
40	A Redox Reaction To Synthesize Nanocrystalline Cu2-xSe in Aqueous Solution. Inorganic Chemistry, 2000, 39, 1838-1839.	1.9	47
41	Water-evaporation-induced self-assembly of $\hat{I}\pm$ -MnO2 hierarchical hollow nanospheres and their applications in ammonia gas sensing. Sensors and Actuators B: Chemical, 2012, 162, 292-299.	4.0	47
42	An aqueous approach to ZnSe and CdSe semiconductor nanocrystals. Materials Chemistry and Physics, 1999, 60, 99-102.	2.0	46
43	Synthesis and Characterization of Cdln2S4Nanorods by Converting CdS Nanorods via the Hydrothermal Route. Inorganic Chemistry, 2001, 40, 3130-3133.	1.9	46
44	A review on cathode materials for advanced lithium ion batteries: microstructure designs and performance regulations. Nanotechnology, 2020, 31, 012001.	1.3	45
45	Effects of light illumination on field emission from CuO nanobelt arrays. Applied Physics Letters, 2005, 86, 151107.	1.5	44
46	A highly atom-efficient strategy to synthesize reduced graphene oxide-Mn3O4 nanoparticles composites for supercapacitors. Journal of Alloys and Compounds, 2016, 685, 949-956.	2.8	42
47	Room temperature growth of nanocrystalline tin (II) selenide from aqueous solution. Journal of Crystal Growth, 2000, 217, 157-160.	0.7	40
48	Effect of structural parameter on field emission properties of semiconducting copper sulphide nanowire films. Journal of Applied Physics, 2003, 93, 1774-1777.	1.1	39
49	Facile synthesis of CuO hollow nanospheres assembled by nanoparticles and their electrochemical performance. Applied Surface Science, 2011, 258, 1317-1321.	3.1	39
50	Cosurfactant-mediated microemulsion to free-standing hierarchical CuO arrays on copper substrates as anodes for lithium-ion batteries. Journal of Materials Chemistry A, 2013, 1, 14368.	5.2	39
51	Recent advances in high performance conducting solid polymer electrolytes for lithium-ion batteries. Journal of Power Sources, 2021, 486, 229378.	4.0	39
52	CoP Microscale Prism-like Superstructure Arrays on Ni Foam as an Efficient Bifunctional Electrocatalyst for Overall Water Splitting. Inorganic Chemistry, 2020, 59, 8522-8531.	1.9	38
53	Synthesis of nanocrystalline lead chalcogenides PbE (E = S, Se, or Te) from alkaline aqueous solutions. Materials Research Bulletin, 2000, 35, 2009-2015.	2.7	37
54	Solvothermal synthesis of hierarchical LiFePO4 microflowers as cathode materials for lithium ion batteries. Journal of Power Sources, 2011, 196, 10176-10182.	4.0	37

#	Article	IF	CITATIONS
55	Ultrathin NiMn-LDH nanosheet structured electrocatalyst for enhanced electrocatalytic urea oxidation. Applied Catalysis A: General, 2021, 614, 118049.	2.2	36
56	Facile microemulsion synthesis of porous CuO nanosphere film and its application in lithium ion batteries. Electrochimica Acta, 2013, 113, 63-68.	2.6	35
57	Fast and highly reversible Na+ intercalation/extraction in Zn/Mg dual-doped P2-Na0.67MnO2 cathode material for high-performance Na-ion batteries. Nano Research, 2021, 14, 3531-3537.	5.8	35
58	Controlled synthesis of cuprous oxide nanospheres and copper sulfide hollow nanospheres. Journal of Physics and Chemistry of Solids, 2009, 70, 840-846.	1.9	34
59	Fabrication of Architectures with Dual Hollow Structures: Arrays of Cu ₂ O Nanotubes Organized by Hollow Nanospheres. Crystal Growth and Design, 2009, 9, 4524-4528.	1.4	34
60	Facile synthesis of mesoporous MnO2/C spheres for supercapacitor electrodes. Chemical Engineering Journal, 2014, 242, 397-403.	6.6	34
61	Self‣ustained Cycle of Hydrolysis and Etching at Solution/Solid Interfaces: A General Strategy To Prepare Metal Oxide Microâ€{Nanostructured Arrays for Highâ€Performance Electrodes. Angewandte Chemie - International Edition, 2015, 54, 3932-3936.	7.2	34
62	A room temperature chemical route to nanocrystalline PbS semiconductor. Materials Letters, 1999, 40, 255-258.	1.3	31
63	Low temperature growth of bismuth sulfide nanorods by a hydrothermal method. Solid State Communications, 2001, 119, 143-146.	0.9	31
64	Synthesis of Ti ³⁺ self-doped TiO ₂ nanocrystals based on Le Chatelier's principle and their application in solar light photocatalysis. RSC Advances, 2016, 6, 74376-74383.	1.7	31
65	Solvothermal Synthesis of Hierarchical LiFePO ₄ Microplates with Exposed (010) Faces as Cathode Materials for Lithium Ion Batteries. Industrial & Engineering Chemistry Research, 2014, 53, 12209-12215.	1.8	30
66	A Replacement Etching Route to CuSe with a Hierarchical Hollow Structure for Enhanced Performance in Lithium Ion Batteries. Journal of Electronic Materials, 2014, 43, 359-368.	1.0	30
67	Mesoscale organization of Cu7S4 nanowires: Formation of novel sheath-like nanotube array. Chemical Physics Letters, 2007, 434, 256-259.	1.2	28
68	A solvothermal route to wurtzite ZnSe nanoparticles. Journal of Materials Research, 2000, 15, 629-632.	1.2	27
69	An Outward Coating Route to CuO/MnO ₂ Nanorod Array Films and Their Efficient Catalytic Oxidation of Acid Fuchsin Dye. Industrial & Engineering Chemistry Research, 2014, 53, 9608-9615.	1.8	27
70	Vertically aligned tungsten oxide nanorod film with enhanced performance in photoluminescence humidity sensing. Sensors and Actuators B: Chemical, 2014, 202, 708-713.	4.0	27
71	Chemical replacement route to Cu2â^'xSe-coated CuO nanotube array anode for enhanced performance in lithium ion batteries. Journal of Materials Chemistry A, 2014, 2, 5800.	5.2	26
72	Preparation and optical properties of Cu2O hollow microsphere film and hollow nanosphere powder via a simple liquid reduction approach. Applied Surface Science, 2007, 253, 6063-6067.	3.1	25

#	Article	IF	CITATIONS
73	An improved solid-state reaction route to Mg2+-doped LiFePO4/C cathode material for Li-ion battery. Ionics, 2014, 20, 169-174.	1.2	25
74	Kinetically Controlled Synthesis of LiNi _{0.5} Mn _{1.5} O ₄ Micro- and Nanostructured Hollow Spheres as High-Rate Cathode Materials for Lithium Ion Batteries. Industrial & Engineering Chemistry Research, 2016, 55, 9352-9361.	1.8	25
75	PVP-bridged Î ³ -LiAlO2 nanolayer on Li1.2Ni0.182Co0.08Mn0.538O2 cathode materials for improving the rate capability and cycling stability. Chemical Engineering Science, 2021, 229, 116126.	1.9	25
76	Thermally activated carbon–nitrogen vacancies in double-shelled NiFe Prussian blue analogue nanocages for enhanced electrocatalytic oxygen evolution. Journal of Materials Chemistry A, 2021, 9, 12734-12745.	5.2	25
77	Room Temperature Synthesis of Cubic Nanocrystalline CdSe in Aqueous Solution. Journal of Solid State Chemistry, 2000, 151, 241-244.	1.4	24
78	A hydrothermal method for low-temperature growth of nanocrystalline pyrite nickel diselenide. Journal of Crystal Growth, 2000, 209, 213-216.	0.7	24
79	Gallium nitride synthesis from sodium azide using iodine as a heat sink and diluent. Chemical Physics Letters, 2002, 351, 229-234.	1.2	24
80	An inward replacement/etching route to controllable fabrication of zinc sulfide nanotube arrays for humidity sensing. Sensors and Actuators B: Chemical, 2012, 165, 62-67.	4.0	24
81	Solid-state polymer electrolytes with polypropylene separator-reinforced sandwich structure for room-temperature lithium ion batteries. Journal of Membrane Science, 2021, 638, 119713.	4.1	24
82	ZnMn ₂ O ₄ nanorods: an effective Fenton-like heterogeneous catalyst with t _{2g} ³ e _g ¹ electronic configuration. Catalysis Science and Technology, 2018, 8, 2557-2566.	2.1	23
83	Ultrafine Ni nanoparticles anchored on carbon nanofibers as highly efficient bifunctional air electrodes for flexible solid-state zinc-air batteries. Journal of Colloid and Interface Science, 2021, 588, 627-636.	5.0	23
84	A Novel Approach to Wellâ€Aligned <scp>TiO</scp> ₂ Nanotube Arrays and Their Enhanced Photocatalytic Performances. AICHE Journal, 2013, 59, 2134-2144.	1.8	22
85	Hierarchical micro/nanostructured WO3 with structural water for high-performance pseudocapacitors. Journal of Alloys and Compounds, 2018, 765, 489-496.	2.8	22
86	Near-Equilibrium Control of Li ₂ TiO ₃ Nanoscale Layer Coated on LiNi _{0.8} Co _{0.1} Mn _{0.1} O ₂ Cathode Materials for Enhanced Electrochemical Performance. Inorganic Chemistry, 2019, 58, 15498-15506.	1.9	21
87	Synthesis and characterization of nanostructured Li2MnO3 from nanostructured MnOOH precursors. Solid State Communications, 2004, 131, 441-445.	0.9	20
88	An optical humidity sensor based on Li3PO4 hollow nanospheres. Sensors and Actuators B: Chemical, 2011, 155, 226-231.	4.0	19
89	New strategy to the controllable synthesis of CuInS2 hollow nanospheres and their applications in lithium ion batteries. Journal of Solid State Chemistry, 2012, 186, 58-63.	1.4	19
90	pH-controlled assembly of three-dimensional tungsten oxide hierarchical nanostructures for catalytic oxidation of cyclohexene to adipic acid. CrystEngComm, 2016, 18, 8688-8695.	1.3	19

#	Article	IF	CITATIONS
91	Photoelectrochemistry of Pure and Core/Sheath Nanowire Arrays of Cu[sub 2]S Directly Grown on Copper Electrodes. Journal of the Electrochemical Society, 2005, 152, G220.	1.3	18
92	Nanostructured hollow spheres of hydroxyapatite: preparation and potential application in drug delivery. Frontiers of Chemical Science and Engineering, 2012, 6, 246-252.	2.3	18
93	Oriented attachment growth of ultra-long Ag2Se crystalline nanowires via water evaporation-induced self-assembly. CrystEngComm, 2013, 15, 5127.	1.3	18
94	A facile synthetic protocol to construct 1D Zn-Mn-Oxide nanostructures with tunable compositions for high-performance lithium storage. Journal of Alloys and Compounds, 2017, 720, 376-382.	2.8	18
95	Surface-Restructured Core/Shell NiO@Co ₃ O ₄ Nanocomposites as Efficient Catalysts for the Oxygen Evolution Reaction. Industrial & Engineering Chemistry Research, 2019, 58, 16581-16587.	1.8	18
96	Constructing P-CoMoO4@NiCoP heterostructure nanoarrays on Ni foam as efficient bifunctional electrocatalysts for overall water splitting. Nano Materials Science, 2023, 5, 278-286.	3.9	18
97	β-MnO2 nanorods: A new and efficient catalyst for isoamyl acetate synthesis. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2010, 356, 134-139.	2.3	17
98	Hydrolysis-Coupled Redox Reaction to 3D Cu/Fe ₃ O ₄ Nanorod Array Electrodes for High-Performance Lithium-Ion Batteries. Inorganic Chemistry, 2017, 56, 7657-7667.	1.9	17
99	Beyond conventional sodium-ion storage mechanisms: a combinational intercalation/conversion reaction mechanism in Ni-ion modified hydrated vanadate for high-rate sodium-ion storage. Energy Storage Materials, 2022, 47, 579-590.	9.5	17
100	Different types of MnO2 recovered from spent LiMn2O4 batteries and their application in electrochemical capacitors. Journal of Materials Science, 2013, 48, 2512-2519.	1.7	16
101	An efficient route to Cu2O nanorod array film for high-performance Li-ion batteries. Thin Solid Films, 2016, 608, 79-87.	0.8	16
102	A fluoride ion-mediated continuous etching–redeposition strategy to synthesize Si nanocomposites with appropriate SiO ₂ coating layers for Li-ion batteries. Chemical Communications, 2018, 54, 12447-12450.	2.2	16
103	Ultrahigh Capacity Retention of a Li ₂ ZrO ₃ -Coated Ni-Rich LiNi _{0.8} Co _{0.1} Mn _{0.1} O ₂ Cathode Material through Covalent Interfacial Engineering. ACS Applied Energy Materials, 2021, 4, 13785-13795.	2.5	16
104	Fabrication and optical properties of ZnO nanostructured thin films via mechanical oscillation and hydrothermal method. Thin Solid Films, 2008, 516, 5974-5980.	0.8	15
105	Preparation of mesoporous MnO2/C catalyst for n-hexyl acetate synthesis. Applied Surface Science, 2012, 258, 4756-4763.	3.1	15
106	Facile synthesis of α-MnO2 micronests composed of nanowires and their enhanced adsorption to Congo red. Frontiers of Chemical Science and Engineering, 2014, 8, 64-72.	2.3	15
107	Preparation of ZnSe films through chemical solution reduction process. Materials Research Bulletin, 1999, 34, 1637-1641.	2.7	14
108	Solvothermal route to Bi ₃ Se ₄ nanorods at low temperature. Journal of Materials Research, 2001, 16, 3361-3365.	1.2	14

#	Article	IF	CITATIONS
109	Hydrothermal synthesis of marcasite iron ditelluride FeTe2 nanorods at low temperature. Materials Letters, 2001, 47, 367-370.	1.3	12
110	Synthesis of nanocrystalline marcasite iron ditelluride FeTe2 in aqueous solution. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2001, 79, 244-246.	1.7	12
111	A chemical lithography route to Bi2S3 nanotubes. Applied Surface Science, 2011, 257, 6239-6242.	3.1	12
112	Large-scale synthesis of self-assembled ultralong cannonite nanobelt film as a visible-light photocatalyst. RSC Advances, 2015, 5, 8537-8543.	1.7	12
113	Sequential precipitation induced interdiffusion: a general strategy to synthesize microtubular materials for high performance lithium ion battery electrodes. Journal of Materials Chemistry A, 2018, 6, 18430-18437.	5.2	12
114	Lithium hydroxyphenyl propanesulfonate imparts composite solid polymer electrolytes with ultrahigh ionic conductivity for dendrite free lithium batteries. Chemical Engineering Journal, 2022, 435, 134775.	6.6	12
115	A Simple Synthesis of Nanocrystalline Binary Metal Chalcogenides in Alkaline Aqueous Solution. Journal of Solid State Chemistry, 2001, 161, 184-189.	1.4	11
116	Novel conducting solid polymer electrolytes with a zwitterionic structure boosting ionic conductivity and retarding lithium dendrite formation. Journal of Materials Chemistry A, 2021, 9, 22878-22891.	5.2	11
117	Exfoliating spent cathode materials with robust interlayer interactions into atomic-thin nanosheets for boosting the oxygen evolution reaction. Journal of Materials Chemistry A, 2022, 10, 3359-3372.	5.2	11
118	Hydrothermal synthesis of Fe5(PO4)4(OH)3·2H2O microflowers for fabricating high-performance LiFePO4/C composites. Ionics, 2014, 20, 653-658.	1.2	10
119	Oriented-Redox Induced Uniform MnO ₂ Coating on Ni ₃ S ₂ Nanorod Arrays as a Stable Anode for Enhanced Performances of Lithium Ion Battery. Langmuir, 2020, 36, 13555-13562.	1.6	10
120	Effects of gradient concentration on the microstructure and electrochemical performance of LiNi0.6Co0.2Mn0.2O2 cathode materials. Frontiers of Chemical Science and Engineering, 2020, 14, 988-996.	2.3	10
121	Recent Advances of Mesoscale-Structured Cathode Materials for High Energy Density Lithium-Ion Batteries. ACS Applied Energy Materials, 2021, 4, 2962-2975.	2.5	10
122	A Green Route to Cyclohexanone: Selective Oxidation of Cyclohexanol Promoted by Non-precious Catalyst of h-WO3 Nanorods. Catalysis Letters, 2016, 146, 1283-1290.	1.4	9
123	Stepwise co-precipitation to the synthesis of urchin-like NiCo2O4 hollow nanospheres as high performance anode material. Journal of Applied Electrochemistry, 2018, 48, 1095-1104.	1.5	9
124	An integrated highly stable anode enabled by carbon nanotube-reinforced all-carbon binder for enhanced performance in lithium-ion battery. Carbon, 2021, 182, 749-757.	5.4	9
125	Construction of a hetero-epitaxial nanostructure at the interface of Li-rich cathode materials to boost their rate capability and cycling performances. Nanoscale, 2021, 13, 20488-20497.	2.8	9
126	Double-Layer Solid Composite Electrolytes Enabling Improved Room-Temperature Cycling Performance for High-Voltage Lithium Metal Batteries. ACS Omega, 2022, 7, 994-1002.	1.6	9

#	Article	IF	CITATIONS
127	An optical humidity sensor based on Ag nanodendrites. Applied Surface Science, 2013, 280, 920-925.	3.1	8
128	A carbothermal reduction method for enhancing the electrochemical performance of LiFePO4/C composite cathode materials. Ionics, 2013, 19, 235-243.	1.2	8
129	A novel hydrolytic reaction to morphology-controlled TiO ₂ micro/nanostructures for enhanced photocatalytic performances. RSC Advances, 2015, 5, 43630-43638.	1.7	8
130	A galvanic replacement reaction to synthesise metal/ZnO heterostructured films on zinc substrates for enhanced photocatalytic performance. RSC Advances, 2016, 6, 103594-103600.	1.7	8
131	In-situ preparation of Fe2O3 hierarchical arrays on stainless steel substrate for high efficient catalysis. Journal of Solid State Chemistry, 2017, 246, 278-283.	1.4	8
132	Synthesis and ammonia sensing property of Ag3CuS2 nanocages obtained from Cu7S4 18-facet hollow nanopolyhedra. Journal of Crystal Growth, 2009, 311, 3347-3351.	0.7	7
133	In-situ design and construction of lithium-ion battery electrodes on metal substrates with enhanced performances: A brief review. Chinese Journal of Chemical Engineering, 2016, 24, 48-52.	1.7	7
134	Preferential Co substitution on Ni sites in Ni–Fe oxide arrays enabling large-current-density alkaline oxygen evolution. Chemical Science, 2022, 13, 7332-7340.	3.7	7
135	Nickel nanoparticles modified MnO nanosheet arrays for high-performance supercapacitor with long-lasting and sustainable capacitance increase. Electrochimica Acta, 2021, 383, 138353.	2.6	6
136	Sandwich-like solid composite electrolytes employed as bifunctional separators for safe lithium metal batteries with excellent cycling performance. Journal of Materials Chemistry A, 2022, 10, 4660-4670.	5.2	6
137	Modification of LiNi0.8Co0.1Mn0.1 cathode with Al-Screened LiPO3 to enhance interfacial stability and ionic dynamics. Chemical Engineering Journal, 2022, 446, 137051.	6.6	6
138	A General and Mild Approach to Controllable Preparation of Manganeseâ€Based Micro―and Nanostructured Bars for High Performance Lithiumâ€ŀon Batteries. Angewandte Chemie, 2016, 128, 3731-3735.	1.6	5
139	Templateâ€free synthesis of singleâ€/doubleâ€walled TiO ₂ nanovesicles: Potential photocatalysts for engineering application. AICHE Journal, 2015, 61, 1478-1482.	1.8	4
140	Ca/Ni Codoping Enables the Integration of High-Rate and High-Capacity Zn-Ion Storage Performances for Layered Hydrated Vanadate. Industrial & Engineering Chemistry Research, 2022, 61, 4212-4221.	1.8	4
141	Coupling High Rate Capability and High Capacity in an Intercalation-Type Sodium-Ion Hybrid Capacitor Anode Material of Hydrated Vanadate via Interlayer-Cation Engineering. ACS Applied Materials & Interfaces, 2022, 14, 17547-17559.	4.0	4
142	Hydrothermal synthesis of crystalline α-/β-MnO2 nanorods via γ-MnOOH nanorod precursors. Frontiers of Chemical Engineering in China, 2007, 1, 365-371.	0.6	3
143	A chemical etching route to controllable fabrication of TiO2 hollow nanospheres for enhancing their photocatalytic activity. Frontiers of Chemical Science and Engineering, 2013, 7, 192-201.	2.3	3
144	Multi-shelled Ni6MnO8 hollow microspheres for high-performance supercapacitors. Materials Research Express, 2020, 7, 065502.	0.8	3

#	Article	IF	CITATIONS
145	Instant Postsynthesis Aqueous Dispersion of Sb-Doped SnO ₂ Nanocrystals: The Synergy between Small-Molecule Amine and Sb Dopant Ratio. ACS Applied Materials & Interfaces, 2020, 12, 29937-29945.	4.0	3
146	Recycle cathode materials from spent lithium-ion batteries by an innovative method. Ionics, 2022, 28, 2135-2141.	1.2	3
147	Lithium-Ion Batteries: Hierarchical Self-assembly of Microscale Cog-like Superstructures for Enhanced Performance in Lithium-Ion Batteries (Adv. Funct. Mater. 18/2011). Advanced Functional Materials, 2011, 21, 3398-3398.	7.8	2
148	Controlled hydrothermal growth and optical characterization of wide band gap Be x Zn1â^'x O nanorod arrays. Journal of Materials Science, 2013, 48, 3936-3942.	1.7	2
149	Novel hierarchical yolk-shell α-Ni(OH)2/Mn2O3 microspheres as high specific capacitance electrode materials for supercapacitors. Frontiers of Chemical Science and Engineering, 2021, 15, 1322-1331.	2.3	2
150	Oriented Catalytic Oxidation Induced Fabrication of CuO/Mn 3 O 4 Hierarchical Arrays as Binderâ€Free Electrodes for Highâ€Performance Supercapacitor. Advanced Materials Interfaces, 2021, 8, 2101076.	1.9	2
151	Field electron emission from cupric oxide-nanobelt films. , 0, , .		0
152	Ni/ZnO heterostructured microspheres: electronic structure engineering for enhanced photocatalytic activity. Materials Research Express, 2019, 6, 0850e5.	0.8	0
153	Polymer-Based Solid-State Electrolytes. ACS Symposium Series, 0, , 201-232.	0.5	0