Sebastian Schlücker

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9474720/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Present and Future of Surface-Enhanced Raman Scattering. ACS Nano, 2020, 14, 28-117.	14.6	2,153
2	Surfaceâ€Enhanced Raman Spectroscopy: Concepts and Chemical Applications. Angewandte Chemie - International Edition, 2014, 53, 4756-4795.	13.8	1,894
3	Label-Free SERS Monitoring of Chemical Reactions Catalyzed by Small Gold Nanoparticles Using 3D Plasmonic Superstructures. Journal of the American Chemical Society, 2013, 135, 1657-1660.	13.7	407
4	SERS Microscopy: Nanoparticle Probes and Biomedical Applications. ChemPhysChem, 2009, 10, 1344-1354.	2.1	406
5	Plasmonic hot electron transport drives nano-localized chemistry. Nature Communications, 2017, 8, 14880.	12.8	328
6	Towards Reliable and Quantitative Surfaceâ€Enhanced Raman Scattering (SERS): From Key Parameters to Good Analytical Practice. Angewandte Chemie - International Edition, 2020, 59, 5454-5462.	13.8	324
7	Synthesis of Bifunctional Au/Pt/Au Core/Shell Nanoraspberries for in Situ SERS Monitoring of Platinum-Catalyzed Reactions. Journal of the American Chemical Society, 2011, 133, 19302-19305.	13.7	286
8	Hot electron-induced reduction of small molecules on photorecycling metal surfaces. Nature Communications, 2015, 6, 7570.	12.8	222
9	Rapid, Quantitative, and Ultrasensitive Pointâ€ofâ€Care Testing: A Portable SERS Reader for Lateral Flow Assays in Clinical Chemistry. Angewandte Chemie - International Edition, 2019, 58, 442-446.	13.8	221
10	SERS Labels for Red Laser Excitation: Silicaâ€Encapsulated SAMs on Tunable Gold/Silver Nanoshells. Angewandte Chemie - International Edition, 2009, 48, 1950-1953.	13.8	201
11	Rational design and synthesis of SERS labels. Analyst, The, 2013, 138, 2224.	3.5	188
12	Raman Microspectroscopy:  A Comparison of Point, Line, and Wide-Field Imaging Methodologies. Analytical Chemistry, 2003, 75, 4312-4318.	6.5	181
13	Monodispersity and size control in the synthesis of 20–100 nm quasi-spherical silver nanoparticles by citrate and ascorbic acid reduction in glycerol–water mixtures. Chemical Communications, 2012, 48, 8682.	4.1	177
14	Hydrogen-Bonded Pyridineâ^'Water Complexes Studied by Density Functional Theory and Raman Spectroscopy. Journal of Physical Chemistry A, 2001, 105, 9983-9989.	2.5	153
15	Hydrophilically stabilized gold nanostars as SERS labels for tissue imaging of the tumor suppressor p63 by immuno-SERS microscopy. Chemical Communications, 2011, 47, 4216.	4.1	150
16	Medical applications of surface-enhanced Raman scattering. Physical Chemistry Chemical Physics, 2013, 15, 5329.	2.8	144
17	Immuno-Raman microspectroscopy:In situ detection of antigens in tissue specimens by surface-enhanced Raman scattering. Journal of Raman Spectroscopy, 2006, 37, 719-721.	2.5	137
18	Spectral Screening of the Energy of Hot Holes over a Particle Plasmon Resonance. Nano Letters, 2019, 19, 1867-1874.	9.1	106

#	Article	IF	CITATIONS
19	Surface-enhanced Raman spectroscopic detection of molecular chemo- and plasmo-catalysis on noble metal nanoparticles. Chemical Communications, 2018, 54, 2326-2336.	4.1	93
20	On the Overlooked Critical Role of the pH Value on the Kinetics of the 4-Nitrophenol NaBH ₄ -Reduction Catalyzed by Noble-Metal Nanoparticles (Pt, Pd, and Au). Journal of Physical Chemistry C, 2020, 124, 2939-2944.	3.1	91
21	Density functional and vibrational spectroscopic analysis of \hat{I}^2 -carotene. Journal of Raman Spectroscopy, 2003, 34, 413-419.	2.5	89
22	3D Selfâ€Assembled Plasmonic Superstructures of Gold Nanospheres: Synthesis and Characterization at the Singleâ€Particle Level. Small, 2011, 7, 3445-3451.	10.0	77
23	Gold and silver nanoparticle monomers are non-SERS-active: a negative experimental study with silica-encapsulated Raman-reporter-coated metal colloids. Physical Chemistry Chemical Physics, 2015, 17, 21120-21126.	2.8	76
24	Rationally designed multifunctional plasmonic nanostructures for surface-enhanced Raman spectroscopy: a review. Reports on Progress in Physics, 2014, 77, 116502.	20.1	74
25	Multiplexing with SERS labels using mixed SAMs of Raman reporter molecules. Analytical and Bioanalytical Chemistry, 2009, 394, 1839-1844.	3.7	70
26	Structural and Molecular Hair Abnormalities in Trichothiodystrophy. Journal of Investigative Dermatology, 2006, 126, 2210-2216.	0.7	69
27	Water soluble SERS labels comprising a SAM with dual spacers for controlled bioconjugation. Physical Chemistry Chemical Physics, 2009, 11, 7499.	2.8	62
28	Metal Nanoparticle atalyzed Reduction Using Borohydride in Aqueous Media: A Kinetic Analysis of the Surface Reaction by Microfluidic SERS. Angewandte Chemie - International Edition, 2016, 55, 13729-13733.	13.8	61
29	Duplex Microfluidic SERS Detection of Pathogen Antigens with Nanoyeast Single-Chain Variable Fragments. Analytical Chemistry, 2014, 86, 9930-9938.	6.5	60
30	Cold Nanoparticles: Fast and Cost-Effective Purification of Gold Nanoparticles in the 20-250 nm Size Range by Continuous Density Gradient Centrifugation (Small 17/2011). Small, 2011, 7, 2406-2406.	10.0	59
31	Raman-encoded microbeads for spectral multiplexing with SERS detection. RSC Advances, 2015, 5, 13762-13767.	3.6	58
32	Optical properties and SERS efficiency of tunable gold/silver nanoshells. Vibrational Spectroscopy, 2009, 50, 43-47.	2.2	56
33	Experimental characterization techniques for plasmon-assisted chemistry. Nature Reviews Chemistry, 2022, 6, 259-274.	30.2	56
34	Probing the SERS brightness of individual Au nanoparticles, hollow Au/Ag nanoshells, Au nanostars and Au core/Au satellite particles: single-particle experiments and computer simulations. Nanoscale, 2018, 10, 21721-21731.	5.6	52
35	Femtogram detection of cytokines in a direct dot-blot assay using SERS microspectroscopy and hydrophilically stabilized Au–Ag nanoshells. Chemical Communications, 2014, 50, 2711-2714.	4.1	50
36	Hydrogen-Bonding between Pyrimidine and Water:  A Vibrational Spectroscopic Analysis. Journal of Physical Chemistry A, 2007, 111, 5185-5191.	2.5	49

#	Article	IF	CITATIONS
37	Two-color SERS microscopy for protein co-localization in prostate tissue with primary antibody–protein A/G–gold nanocluster conjugates. Nanoscale, 2014, 6, 2361-2367.	5.6	49
38	Surface-Enhanced Spectroscopies of a Molecular Monolayer in an All-Dielectric Nanoantenna. ACS Photonics, 2018, 5, 1546-1557.	6.6	48
39	Ideal Dimers of Gold Nanospheres for Precision Plasmonics: Synthesis and Characterization at the Singleâ€Particle Level for Identification of Higher Order Modes. Small, 2018, 14, 1702754.	10.0	48
40	Conformational differences in protein disulfide linkages between normal hair and hair from subjects with trichothiodystrophy: A quantitative analysis by Raman microspectroscopy. Biopolymers, 2006, 82, 615-622.	2.4	47
41	Comparability of Raman Spectroscopic Configurations: A Large Scale Cross-Laboratory Study. Analytical Chemistry, 2020, 92, 15745-15756.	6.5	46
42	In vitro polarization-resolved resonance Raman studies of the interaction of hematin with the antimalarial drug chloroquine. Journal of Raman Spectroscopy, 2004, 35, 819-821.	2.5	45
43	Synthesis of Glassâ€Coated SERS Nanoparticle Probes via SAMs with Terminal SiO ₂ Precursors. Small, 2010, 6, 733-737.	10.0	44
44	Quantitative detection of C-deuterated drugs by CARS microscopy and Raman microspectroscopy. Analyst, The, 2011, 136, 3686.	3.5	43
45	Surface Plasmon Coupling in Dimers of Gold Nanoparticles: Experiment and Theory for Ideal (Spherical) and Nonideal (Faceted) Building Blocks. ACS Photonics, 2019, 6, 642-648.	6.6	43
46	Two-dimensional probing of ground-state vibrational dynamics in porphyrin molecules by fs-CARS. Journal of Raman Spectroscopy, 2001, 32, 771-784.	2.5	42
47	Direct and Label-Free Detection of Solid-Phase-Bound Compounds by Using Surface-Enhanced Raman Scattering Microspectroscopy. Angewandte Chemie - International Edition, 2007, 46, 4786-4789.	13.8	42
48	<i>In Situ</i> Photothermal Response of Single Gold Nanoparticles through Hyperspectral Imaging Anti-Stokes Thermometry. ACS Nano, 2021, 15, 2458-2467.	14.6	42
49	Microspectroscopic SERS detection of interleukin-6 with rationally designed gold/silver nanoshells. Analyst, The, 2013, 138, 1764.	3.5	40
50	Size-Selective Optical Printing of Silicon Nanoparticles through Their Dipolar Magnetic Resonance. ACS Photonics, 2019, 6, 815-822.	6.6	40
51	Immuno-Surface-Enhanced Coherent Anti-Stokes Raman Scattering Microscopy: Immunohistochemistry with Target-Specific Metallic Nanoprobes and Nonlinear Raman Microscopy. Analytical Chemistry, 2011, 83, 7081-7085.	6.5	38
52	Quantitative CARS Microscopic Detection of Analytes and Their Isotopomers in a Twoâ€Channel Microfluidic Chip. Small, 2009, 5, 2816-2818.	10.0	37
53	Rapid and Sensitive SERS-Based Lateral Flow Test for SARS-CoV2-Specific IgM/IgG Antibodies. Analytical Chemistry, 2021, 93, 12391-12399.	6.5	36
54	Molecularly linked 3D plasmonic nanoparticle core/satellite assemblies: SERS nanotags with single-particle Raman sensitivity. Physical Chemistry Chemical Physics, 2015, 17, 24356-24360.	2.8	35

#	Article	IF	CITATIONS
55	Design and synthesis of Raman reporter molecules for tissue imaging by immuno ERS microscopy. Journal of Biophotonics, 2011, 4, 453-463.	2.3	33
56	Single gold trimers and 3D superstructures exhibit a polarization-independent SERS response. Nanoscale, 2013, 5, 110-113.	5.6	32
57	Vibrational Dynamics in Hydrogen-Bonded (Pyridine + Water) Complexes Studied by Spectrally Resolved Femtosecond CARS. Zeitschrift Fur Physikalische Chemie, 2002, 216, .	2.8	31
58	FT-Raman and NIR-SERS characterization of the antimalarial drugs chloroquine and mefloquine and their interaction with hematin. Journal of Raman Spectroscopy, 2006, 37, 326-334.	2.5	31
59	Monosodium glutamate in its anhydrous and monohydrate form: Differentiation by Raman spectroscopies and density functional calculations. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2007, 66, 604-615.	3.9	30
60	Effect of Antigen Retrieval Methods on Nonspecific Binding of Antibody–Metal Nanoparticle Conjugates on Formalin-Fixed Paraffin-Embedded Tissue. Analytical Chemistry, 2018, 90, 760-768.	6.5	28
61	Tunable narrow band filter for CARS microscopy. Laser Physics Letters, 2010, 7, 510-516.	1.4	27
62	Hydrogen bonding in different pyrimidine–methanol clusters probed by polarized Raman spectroscopy and DFT calculations. Journal of Raman Spectroscopy, 2011, 42, 667-675.	2.5	27
63	Advanced SERS Sensor Based on Capillarity-Assisted Preconcentration through Gold Nanoparticle-Decorated Porous Nanorods. Small, 2017, 13, 1603947.	10.0	27
64	Theory of SERS enhancement: general discussion. Faraday Discussions, 2017, 205, 173-211.	3.2	27
65	Concentration dependent wavenumber shifts and linewidth changes of some prominent vibrational modes of C4H8O investigated in a binary system (C4H8O+H2O) by polarized Raman study and ab initio calculations. Journal of Molecular Structure, 2005, 735-736, 349-357.	3.6	24
66	Tunable light source for narrowband laser excitation: application to Raman spectroscopy. Laser Physics Letters, 2009, 6, 639-643.	1.4	23
67	Strong competition between electromagnetic enhancement and surface-energy-transfer induced quenching in plasmonic dye-sensitized solar cells: A generic yet controllable effect. Nano Energy, 2016, 26, 297-304.	16.0	23
68	Rapid and sensitive SERS detection of the cytokine tumor necrosis factor alpha (tnf-α) in a magnetic bead pull-down assay with purified and highly Raman-active gold nanoparticle clusters. Analytical and Bioanalytical Chemistry, 2018, 410, 5993-6000.	3.7	23
69	Inelastic neutron scattering, Raman, vibrational analysis with anharmonic corrections, and scaled quantum mechanical force field for polycrystalline l-alanine. Chemical Physics, 2008, 343, 1-18.	1.9	22
70	SERS in biology/biomedical SERS: general discussion. Faraday Discussions, 2017, 205, 429-456.	3.2	22
71	In Situ Monitoring of Palladium-Catalyzed Chemical Reactions by Nanogap-Enhanced Raman Scattering using Single Pd Cube Dimers. Journal of the American Chemical Society, 2022, 144, 5003-5009.	13.7	22
72	Dynamics and mechanism of the Crystal II → smecticG phase transition in TB7A by a temperature-dependent micro-Raman study and DFT calculations. Journal of Raman Spectroscopy, 2009, 40, 881-886.	2.5	21

#	Article	IF	CITATIONS
73	Conformations and vibrational properties of disulfide bridges: Potential energy distribution in the model system diethyl disulfide. Chemical Physics, 2009, 355, 81-84.	1.9	21
74	FT-IR and FT-Raman spectra, ab initio and density functional computations of the vibrational spectra, molecular geometry, atomic charges and some molecular properties of the biomolecule 5-iodouracil. Computational and Theoretical Chemistry, 2010, 940, 29-44.	1.5	21
75	Rapid immuno‧ERS microscopy for tissue imaging with singleâ€nanoparticle sensitivity. Journal of Biophotonics, 2013, 6, 785-792.	2.3	21
76	Dynamics of hot electron generation in metallic nanostructures: general discussion. Faraday Discussions, 2019, 214, 123-146.	3.2	21
77	UV resonance Raman spectroscopic monitoring of supramolecular complex formation: peptide recognition in aqueous solution. Physical Chemistry Chemical Physics, 2007, 9, 4598.	2.8	20
78	Fast and Costâ€Effective Purification of Gold Nanoparticles in the 20–250 nm Size Range by Continuous Density Gradient Centrifugation. Small, 2011, 7, 2443-2448.	10.0	20
79	Selfâ€association and hydrogen bonding of propionaldehyde in binary mixtures with water and methanol investigated by concentrationâ€dependent polarized Raman study and DFT calculations. Journal of Raman Spectroscopy, 2011, 42, 851-858.	2.5	20
80	Fast and reproducible iSERS microscopy of single HER2-positive breast cancer cells using gold nanostars as SERS nanotags. Faraday Discussions, 2017, 205, 377-386.	3.2	20
81	Quantitative Determination of Contribution by Enhanced Local Electric Field, Antennaâ€Amplified Light Scattering, and Surface Energy Transfer to the Performance of Plasmonic Organic Solar Cells. Small, 2018, 14, e1800870.	10.0	20
82	Towards quantitative multiâ€color nanodiagnostics: spectral multiplexing with six silicaâ€encapsulated SERS labels. Journal of Raman Spectroscopy, 2016, 47, 1012-1016.	2.5	19
83	Reorganizational dynamics of multilamellar lipid bilayer assemblies using continuously scanning Fourier transform infrared spectroscopic imaging. Chemistry and Physics of Lipids, 2004, 130, 167-174.	3.2	18
84	Precision Plasmonics with Monomers and Dimers of Spherical Gold Nanoparticles: Nonequilibrium Dynamics at the Time and Space Limits. Journal of Physical Chemistry C, 2019, 123, 13181-13191.	3.1	18
85	Site-specific pKa determination of the carboxylate-binding subunit in artificial peptide receptors. Chemical Communications, 2010, 46, 2133.	4.1	17
86	Quantitative label-free monitoring of peptide recognition by artificial receptors: a comparative FT-IR and UV resonance Raman spectroscopic study. Chemical Science, 2012, 3, 3371.	7.4	17
87	Characterization of guanidiniocarbonyl pyrroles in water by pH-dependent UV Raman spectroscopy and component analysis. Physical Chemistry Chemical Physics, 2008, 10, 6770.	2.8	16
88	Metal Nanoparticleâ€Catalyzed Reduction Using Borohydride in Aqueous Media: A Kinetic Analysis of the Surface Reaction by Microfluidic SERS. Angewandte Chemie, 2016, 128, 13933-13937.	2.0	16
89	Labelâ€free SERS monitoring of hydride reduction catalyzed by Au nanostars. Journal of Raman Spectroscopy, 2016, 47, 1024-1028.	2.5	16
90	Surface-Enhanced Raman Spectroscopy and Density Functional Theory Calculations of a Rationally Designed Rhodamine with Thiol Groups at the Xanthene Ring. Journal of Physical Chemistry C, 2017, 121, 15310-15317.	3.1	16

#	Article	IF	CITATIONS
91	The role of DNA nanostructures in the catalytic properties of an allosterically regulated protease. Science Advances, 2022, 8, eabk0425.	10.3	16
92	Continuous-wave solid-state Raman laser for spectroscopic applications. Journal of Raman Spectroscopy, 2006, 37, 421-428.	2.5	15
93	Localization of PDâ€L1 on single cancer cells by iSERS microscopy with Au/Au core/satellite nanoparticles. Journal of Biophotonics, 2020, 13, e201960034.	2.3	15
94	6-Color/1-Target Immuno-SERS Microscopy on the Same Single Cancer Cell. ACS Applied Materials & Interfaces, 2020, 12, 32321-32327.	8.0	15
95	iSERS microscopy guided by wide field immunofluorescence: analysis of HER2 expression on normal and breast cancer FFPE tissue sections. Analyst, The, 2016, 141, 5113-5119.	3.5	14
96	Analytical SERS: general discussion. Faraday Discussions, 2017, 205, 561-600.	3.2	14
97	Evaluation of 3D gold nanodendrite layers obtained by templated galvanic displacement reactions for SERS sensing and heterogeneous catalysis. Nanoscale, 2018, 10, 20671-20680.	5.6	14
98	Structural Investigations on Octaethylporphyrin Using Density Functional Theory and Polarization-Sensitive Resonance Coherent Anti-Stokes Raman Scattering Spectroscopy. Journal of Physical Chemistry A, 2001, 105, 9482-9488.	2.5	13
99	Detection of Pesticide Model Compounds in Ethanolic and Aqueous Microdroplets by Nonlinear Raman Spectroscopy. Analytical Chemistry, 2001, 73, 3146-3152.	6.5	13
100	Femtosecond coherent Raman spectroscopy and its application to porphyrins. Biopolymers, 2002, 67, 226-232.	2.4	13
101	Quantitative, label-free and site-specific monitoring of molecular recognition: a multivariate resonance Raman approach. Chemical Communications, 2011, 47, 568-570.	4.1	13
102	Polarized Raman microspectroscopy on intact human hair. Journal of Biophotonics, 2008, 1, 419-424.	2.3	12
103	Singlet-oxygen generation in the catalytic reaction of dioxiranes with nucleophilic anions. Photochemical and Photobiological Sciences, 2004, 3, 182-188.	2.9	11
104	Plasmonic Effects of Au Nanoparticles on the Vibrational Sum Frequency Spectrum of 4-Nitrothiophenol. Journal of Physical Chemistry C, 2019, 123, 24234-24242.	3.1	11
105	Plasmonically active micron-sized beads for integrated solid-phase synthesis and label-free SERS analysis. Chemical Communications, 2011, 47, 12762.	4.1	10
106	Direct Silica Encapsulation of Selfâ€Assembledâ€Monolayerâ€Based Surfaceâ€Enhanced Raman Scattering Labels with Complete Surface Coverage of Raman Reporters by Noncovalently Bound Silane Precursors. Chemistry - an Asian Journal, 2014, 9, 2219-2224.	3.3	10
107	Hydrogen bonding in the pyrimidine/ formamide system: a concentrationâ€dependent Raman and DFT study. Journal of Raman Spectroscopy, 2010, 41, 1714-1719.	2.5	9
108	Tunable optical setup with high flexibility for spectrally resolved coherent anti-Stokes Raman scattering microscopy. Laser Physics Letters, 2011, 8, 541-546.	1.4	9

#	Article	IF	CITATIONS
109	Simultaneous Rayleigh/Mie and Raman/Fluorescence Characterization of Molecularly Functionalized Colloids by Correlative Single-Particle Real-Time Imaging in Suspension. Analytical Chemistry, 2018, 90, 723-728.	6.5	9
110	New materials for hot electron generation: general discussion. Faraday Discussions, 2019, 214, 365-386.	3.2	9
111	ImmunoSERS microscopy for the detection of smooth muscle cells in atherosclerotic plaques. Biosensors and Bioelectronics, 2019, 133, 79-85.	10.1	9
112	Rational design of thiolated polyenes as trifunctional Raman reporter molecules in surfaceâ€enhanced Raman scattering nanotags for cytokine detection in a lateral flow assay. Journal of Biophotonics, 2020, 13, e201960126.	2.3	9
113	Improper hydrogen bonding and motional narrowing in binary mixtures of 2―and 3â€bromopyridine in methanol probed by polarized Raman study and DFT calculations. Journal of Raman Spectroscopy, 2007, 38, 1656-1664.	2.5	8
114	Raman spectroscopic investigation of polycyanacrylate capsules. Journal of Molecular Structure, 1999, 482-483, 497-501.	3.6	7
115	On the chemiluminescence in the oxidation of tetravalent uranium to the uranyl ion by dimethyldioxirane. Luminescence, 2002, 17, 293-298.	2.9	7
116	Symmetry Properties of Vibrational Modes in Mesoporphyrin IX Dimethyl Ester Investigated by Polarization-Sensitive Resonance Raman and CARS Spectroscopy. Journal of Physical Chemistry A, 2006, 110, 11252-11259.	2.5	7
117	Selective Detection of Proteins and Nucleic Acids with Biofunctionalized SERS Labels. , 2009, , 267-288.		7
118	Site‣pecific SERS Assay for Survivin Protein Dimer: From Ensemble Experiments to Correlative Singleâ€Particle Imaging. Small, 2017, 13, 1700802.	10.0	7
119	UV resonance Raman spectroscopy of the supramolecular ligand guanidiniocarbonyl indole (GCI) with 244 nm laser excitation. Beilstein Journal of Organic Chemistry, 2020, 16, 2911-2919.	2.2	7
120	Crystal—Smectic G Transformation Investigated by Temperature-Dependent Raman Study. Applied Spectroscopy, 2003, 57, 1288-1294.	2.2	6
121	Quantitative polarization-sensitive resonance CARS and resonance Raman spectroscopy on octaethylporphine. Journal of Raman Spectroscopy, 2006, 37, 384-391.	2.5	6
122	SERS microscopy: plasmonic nanoparticle probes and biomedical applications. , 2010, , .		6
123	FT-IR and FT-Raman spectra of 5-fluoroorotic acid with solid state simulation by DFT methods. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2014, 132, 430-445.	3.9	6
124	Molecular recognition of carboxylates in the protein leucine zipper by a multivalent supramolecular ligand: residue-specific, sensitive and label-free probing by UV resonance Raman spectroscopy. Physical Chemistry Chemical Physics, 2018, 20, 1817-1820.	2.8	6
125	Prospects of ultraviolet resonance Raman spectroscopy in supramolecular chemistry on proteins. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2021, 254, 119622.	3.9	6
126	Polarizationâ€sensitive CARS spectroscopy on freeâ€base porphyrins: coproporphyrin I tetramethyl ester. Journal of Raman Spectroscopy, 2008, 39, 942-952.	2.5	5

#	Article	IF	CITATIONS
127	Surface Enhancement in Femtosecond Stimulated Raman Scattering. , 2010, , .		5
128	Molecular interactions of 2′-deoxyguanosine 5′-monophosphate with glycine in aqueous media probed via concentration and pH dependent Raman spectroscopic investigations and DFT study. Physical Chemistry Chemical Physics, 2012, 14, 14315.	2.8	5
129	Applications in catalysis, photochemistry, and photodetection: general discussion. Faraday Discussions, 2019, 214, 479-499.	3.2	5
130	Schnelle, quantitative und hochempfindliche patientennahe Labordiagnostik: ein tragbares Raman‣esegeräfür seitliche Flusstests in der klinischen Chemie. Angewandte Chemie, 2019, 131, 450-455.	2.0	5
131	Site-specific facet protection of gold nanoparticles inside a 3D DNA origami box: a tool for molecular plasmonics. Chemical Communications, 2021, 57, 3151-3153.	4.1	5
132	Ultraviolet resonance Raman spectroscopy with a continuously tunable picosecond laser: Application to the supramolecular ligand guanidiniocarbonyl pyrrole (GCP). Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2021, 250, 119359.	3.9	5
133	Ultraviolet resonance Raman spectroscopy of anthracene: Experiment and theory. Journal of Raman Spectroscopy, 0, , .	2.5	5
134	Vibrational Spectroscopic Characterization of 2-(2,4-Dinitrobenzyl)-pyridine (α-DNBP) in Solution by Polarization-Resolved Spontaneous Raman Scattering and Broadband CARS. Journal of Physical Chemistry A, 2019, 123, 6291-6297.	2.5	4
135	Auf dem Weg zur verlÃ ¤ slichen und quantitativen SERS‧pektroskopie: von Schlüsselparametern zur guten analytischen Praxis. Angewandte Chemie, 2020, 132, 5496-5505.	2.0	4
136	Ultrafast time-resolved molecular spectroscopy. , 2020, , 563-594.		4
137	A fresh look at the structure of aromatic thiols on Au surfaces from theory and experiment. Journal of Chemical Physics, 2021, 155, 044707.	3.0	4
138	Vibrational spectroscopic investigations and density functional theory calculations ontrans-diaquabis(picolinato)zinc(II) dihydrate complex. Journal of Raman Spectroscopy, 2003, 34, 276-281.	2.5	3
139	Spectrally shaped light from supercontinuum fiber light sources. Optics Communications, 2011, 284, 1970-1974.	2.1	3
140	Force field-based conformational searches: efficiency and performance for peptide receptor complexes. Molecular Physics, 2013, 111, 2489-2500.	1.7	3
141	ISERS Microscopy for Tissue-Based Cancer Diagnostics with SERS Nanotags. Springer Series in Surface Sciences, 2018, , 347-379.	0.3	3
142	Immuno-SERS: from nanotag design to assays and microscopy. , 2020, , 485-528.		3
143	Origin of the blueâ€ s hifted hydrogen bond in the vibrational Raman spectra of pyridine–water complexes: A density functional theory study. Journal of Raman Spectroscopy, 2021, 52, 1722-1734.	2.5	3
144	Deep UV Resonance Raman Spectroscopy with a Tunable 4 kHz Nanosecond Solid-State Laser and a 1 mL Circulating Free-Flow System. Zeitschrift Fur Physikalische Chemie, 2011, 225, 691-702.	2.8	2

#	Article	IF	CITATIONS
145	Towards label-free and site-specific probing of the local pH in proteins: pH-dependent deep UV Raman spectra of histidine and tyrosine. Journal of Molecular Structure, 2014, 1073, 77-81.	3.6	2
146	Gold Nanorods Induce Endoplasmic Reticulum Stress and Autocrine Inflammatory Activation in Human Neutrophils. ACS Nano, 2022, 16, 11011-11026.	14.6	2
147	Vibrational Microspectroscopic Imaging: Spatial Resolution Enhancement. , 2004, , .		1
148	Cover Picture: SERS Labels for Red Laser Excitation: Silica-Encapsulated SAMs on Tunable Gold/Silver Nanoshells (Angew. Chem. Int. Ed. 11/2009). Angewandte Chemie - International Edition, 2009, 48, 1867-1867.	13.8	1
149	Two channel microfluidic CARS for quantifying pure vibrational contrast of model analytes. Proceedings of SPIE, 2010, , .	0.8	1
150	Two-channel microfluidic CARS: experimental quantification of pure vibrational contrast in CARS images. Proceedings of SPIE, 2011, , .	0.8	1
151	Prof. Dr Dr h.c. Wolfgang Kiefer An appreciation of Wolfgang Kiefer on the occasion of his 75th birthday. Journal of Raman Spectroscopy, 2016, 47, 1001-1002.	2.5	1
152	Precision Plasmonics: Ideal Dimers of Gold Nanospheres for Precision Plasmonics: Synthesis and Characterization at the Singleâ€Particle Level for Identification of Higher Order Modes (Small 4/2018). Small, 2018, 14, 1870018.	10.0	1
153	Frontispiece: Rapid, Quantitative, and Ultrasensitive Point-of-Care Testing: A Portable SERS Reader for Lateral Flow Assays in Clinical Chemistry. Angewandte Chemie - International Edition, 2019, 58, .	13.8	1
154	REMOTE SENSING OF AEROSOL DROPLETS BY NONLINEAR RAMAN SPECTROSCOPY. Journal of Aerosol Science, 2001, 32, 41-42.	3.8	1
155	SERS and Solid Phase Synthesis. , 2010, , .		0
156	Immuno-SERS Microscopy: Nanoparticle Probes And Tissue Diagnostics. , 2010, , .		0
157	Quantitative UV RR Spectroscopy of Artificial Peptide Receptors. , 2010, , .		0
158	Direct Silica Encapsulation of SERS Labels via SAMs Containing Terminal SiO[sub 2] Precursors. , 2010, ,		0
159	Optimal control of coherent anti-Stokes Raman scattering image contrast. Applied Physics Letters, 2012, 100, 261106.	3.3	0
160	Surface-enhanced spectroscopies. Physical Chemistry Chemical Physics, 2015, 17, 21045-21045.	2.8	0
161	Correlative Microscopy: Siteâ€Specific SERS Assay for Survivin Protein Dimer: From Ensemble Experiments to Correlative Singleâ€Particle Imaging (Small 32/2017). Small, 2017, 13, .	10.0	0
162	Frontispiz: Schnelle, quantitative und hochempfindliche patientennahe Labordiagnostik: ein tragbares Raman-Lesegeräfür seitliche Flusstests in der klinischen Chemie. Angewandte Chemie, 2019, 131, .	2.0	0

0

#	Article	IF	CITATIONS
163	iSERS microscopy: point-of-care diagnosis and tissue imaging. , 2022, , 327-372.		0

164 Fundamentals of Nanobiophotonics for Diagnostics and Therapy. , 2022, , 3-39.