
Hidemitsu Sakai

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9474591/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Increasing CO2 threatens human nutrition. Nature, 2014, 510, 139-142.	13.7	1,024
2	Rice cultivar responses to elevated CO2 at two free-air CO2 enrichment (FACE) sites in Japan. Functional Plant Biology, 2013, 40, 148.	1.1	213
3	Interactions of elevated [CO2] and night temperature on rice growth and yield. Agricultural and Forest Meteorology, 2009, 149, 51-58.	1.9	179
4	Combined effects of elevated [CO2] and high night temperature on carbon assimilation, nitrogen absorption, and the allocations of C and N by rice (Oryza sativa L.). Agricultural and Forest Meteorology, 2010, 150, 1174-1181.	1.9	91
5	Rice grain yield and quality responses to freeâ€air CO ₂ enrichment combined with soil and water warming. Global Change Biology, 2016, 22, 1256-1270.	4.2	86
6	Effects of Elevated Atmospheric CO2 Concentrations on CH4 and N2O Emission from Rice Soil: An Experiment in Controlled-environment Chambers. Biogeochemistry, 2006, 77, 351-373.	1.7	83
7	Rice carbon balance under elevated CO2. New Phytologist, 2001, 150, 241-249.	3.5	69
8	Impacts of elevated atmospheric CO2 on nutrient content of important food crops. Scientific Data, 2015, 2, 150036.	2.4	66
9	A meta-analysis of leaf nitrogen distribution within plant canopies. Annals of Botany, 2016, 118, 239-247.	1.4	66
10	Response of soil, leaf endosphere and phyllosphere bacterial communities to elevated CO2 and soil temperature in a rice paddy. Plant and Soil, 2015, 392, 27-44.	1.8	58
11	Do the Rich Always Become Richer? Characterizing the Leaf Physiological Response of the High-Yielding Rice Cultivar Takanari to Free-Air CO2 Enrichment. Plant and Cell Physiology, 2014, 55, 381-391.	1.5	57
12	Effects of elevated carbon dioxide concentration on biological nitrogen fixation, nitrogen mineralization and carbon decomposition in submerged rice soil. Biology and Fertility of Soils, 2001, 34, 7-13.	2.3	56
13	CH ₄ emission with differences in atmospheric CO ₂ enrichment and rice cultivars in a Japanese paddy soil. Clobal Change Biology, 2008, 14, 2678-2687.	4.2	51
14	Heat-tolerant rice cultivars retain grain appearance quality under free-air CO2 enrichment. Rice, 2014, 7, 6.	1.7	50
15	The effects of free-air CO2 enrichment (FACE) on carbon and nitrogen accumulation in grains of rice (Oryza sativa L.). Journal of Experimental Botany, 2013, 64, 3179-3188.	2.4	49
16	Increasing canopy photosynthesis in rice can be achieved without a large increase in water use—A model based on freeâ€eir <scp>CO</scp> ₂ enrichment. Global Change Biology, 2018, 24, 1321-1341.	4.2	47
17	Performance of the enlarged Rice-FACE system using pure CO2 installed in Tsukuba, Japan. J Agricultural Meteorology, 2012, 68, 15-23.	0.8	47
18	Grain growth of different rice cultivars under elevated CO2 concentrations affects yield and quality. Field Crops Research, 2015, 179, 72-80.	2.3	45

HIDEMITSU SAKAI

#	Article	IF	CITATIONS
19	Quantitative trait loci for large sink capacity enhance rice grain yield under free-air CO2 enrichment conditions. Scientific Reports, 2017, 7, 1827.	1.6	43
20	Increased night temperature reduces the stimulatory effect of elevated carbon dioxide concentration on methane emission from rice paddy soil. Global Change Biology, 2008, 14, 644-656.	4.2	42
21	Rice plant response to long term CO2 enrichment: Gene expression profiling. Plant Science, 2009, 177, 203-210.	1.7	41
22	Soil and Water Warming Accelerates Phenology and Down-Regulation of Leaf Photosynthesis of Rice Plants Grown Under Free-Air CO2 Enrichment (FACE). Plant and Cell Physiology, 2014, 55, 370-380.	1.5	41
23	Effects of Elevated Carbon Dioxide, Elevated Temperature, and Rice Growth Stage on the Community Structure of Rice Root–Associated Bacteria. Microbes and Environments, 2014, 29, 184-190.	0.7	41
24	Response of the floating aquatic fern Azolla filiculoides to elevated CO2, temperature, and phosphorus levels. Hydrobiologia, 2010, 656, 5-14.	1.0	39
25	Differential response of rice plants to high night temperatures imposed at varying developmental phases. Agricultural and Forest Meteorology, 2015, 209-210, 69-77.	1.9	38
26	Elevated atmospheric CO2 levels affect community structure of rice root-associated bacteria. Frontiers in Microbiology, 2015, 6, 136.	1.5	38
27	A High-Yielding Rice Cultivar "Takanari―Shows No N Constraints on CO2 Fertilization. Frontiers in Plant Science, 2019, 10, 361.	1.7	31
28	How elevated CO2 affects our nutrition in rice, and how we can deal with it. PLoS ONE, 2019, 14, e0212840.	1.1	31
29	Yield responses to elevated CO2 concentration among Japanese rice cultivars released since 1882. Plant Production Science, 2019, 22, 352-366.	0.9	30
30	Influence of elevated concentrations of atmospheric CO2 on CH4 and CO2 entrapped in rice-paddy soil. Chemical Geology, 2005, 218, 15-24.	1.4	27
31	Characterization of Leaf Blade- and Leaf Sheath-Associated Bacterial Communities and Assessment of Their Responses to Environmental Changes in CO ₂ , Temperature, and Nitrogen Levels under Field Conditions. Microbes and Environments, 2015, 30, 51-62.	0.7	24
32	Effect of Elevated CO ₂ Concentration, Elevated Temperature and No Nitrogen Fertilization on Methanogenic Archaeal and Methane-Oxidizing Bacterial Community Structures in Paddy Soil. Microbes and Environments, 2016, 31, 349-356.	0.7	23
33	Vulnerability of lodging risk to elevated CO2 and increased soil temperature differs between rice cultivars. European Journal of Agronomy, 2013, 46, 20-24.	1.9	22
34	Rice Free-Air Carbon Dioxide Enrichment Studies to Improve Assessment of Climate Change Effects on Rice Agriculture. Advances in Agricultural Systems Modeling, 2016, , 45-68.	0.3	22
35	Elevated temperature has stronger effects on the soil food web of a flooded paddy than does CO2. Soil Biology and Biochemistry, 2014, 70, 166-175.	4.2	20
36	Effect of CO2Enrichment on the Translocation and Partitioning of Carbon at the Early Grain-filling Stage in Rice (Oryza sativaL.). Plant Production Science, 2005, 8, 8-15.	0.9	19

HIDEMITSU SAKAI

#	Article	IF	CITATIONS
37	Interactive Effects of Elevated Atmospheric CO ₂ and Waterlogging on Vegetative Growth of Soybean (<i>Glycine max</i> (L.) Merr.). Plant Production Science, 2012, 15, 238-245.	0.9	16
38	Effects of elevated [CO2] on stem and root lodging among rice cultivars. Science Bulletin, 2013, 58, 1787-1794.	1.7	16
39	Planting geometry as a preâ€screening technique for identifying <scp>CO₂</scp> responsive rice genotypes: a case study of panicle number. Physiologia Plantarum, 2014, 152, 520-528.	2.6	16
40	Nitrogen Distribution in Leaf Canopies of High‥ielding Rice Cultivar Takanari. Crop Science, 2017, 57, 2080-2088.	0.8	16
41	Effects of Elevated Atmospheric CO2 on Respiratory Rates in Mature Leaves of Two Rice Cultivars Grown at a Free-Air CO2 Enrichment Site and Analyses of the Underlying Mechanisms. Plant and Cell Physiology, 2018, 59, 637-649.	1.5	16
42	Five-year soil warming changes soil C and N dynamics in a single rice paddy field in Japan. Science of the Total Environment, 2021, 756, 143845.	3.9	16
43	Varietal Difference in the Occurrence of Milky White Kernels in Response to Assimilate Supply in Rice Plants (<i>Oryza sativa</i> L.). Plant Production Science, 2011, 14, 111-117.	0.9	14
44	Changes in concentration and δ13C value of dissolved CH4, CO2 and organic carbon in rice paddies under ambient and elevated concentrations of atmospheric CO2. Organic Geochemistry, 2005, 36, 813-823.	0.9	13
45	High mesophyll conductance in the high-yielding rice cultivar Takanari quantified with the combined gas exchange and chlorophyll fluorescence measurements under free-air CO ₂ enrichment. Plant Production Science, 2019, 22, 395-406.	0.9	13
46	Oxalate contents in leaves of two rice cultivars grown at a free-air CO ₂ enrichment (FACE) site. Plant Production Science, 2019, 22, 407-411.	0.9	13
47	Effects of Elevated CO2Concentration on Photosynthetic Carbon Metabolism in Flag-Leaf Blades of Rice before and after Heading. Plant Production Science, 2003, 6, 52-58.	0.9	12
48	Analysis of factors related to varietal differences in the yield of rice (<i>Oryza sativa</i> L.) under Free-Air CO ₂ Enrichment (FACE) conditions. Plant Production Science, 2020, 23, 19-27.	0.9	12
49	Short-term high nighttime temperatures pose an emerging risk to rice grain failure. Agricultural and Forest Meteorology, 2022, 314, 108779.	1.9	11
50	Effects of free-air CO ₂ enrichment on flower opening time in rice. Plant Production Science, 2019, 22, 367-373.	0.9	9
51	Winter nocturnal warming affects the freeze-thaw frequency, soil aggregate distribution, and the contents and decomposability of C and N in paddy fields. Science of the Total Environment, 2022, 802, 149870.	3.9	9
52	Effects of free-air CO ₂ enrichment on heat-induced sterility and pollination in rice. Plant Production Science, 2019, 22, 374-381.	0.9	8
53	The lowland paddy weed Monochoria vaginalis emits N2O but not CH4. Agriculture, Ecosystems and Environment, 2010, 137, 219-221.	2.5	7
54	Nitrogen resorption in senescing leaf blades of rice exposed to free-air CO2 enrichment (FACE) under different N fertilization levels. Plant and Soil, 2017, 418, 231-240.	1.8	5

HIDEMITSU SAKAI

#	ARTICLE	IF	CITATIONS
55	Yield response of high-yielding rice cultivar Oonari to different environmental conditions. Plant Production Science, 2020, 23, 69-74.	0.9	4
56	Atmospheric CO2 Concentration and N Availability Affect the Balance of the Two Photosystems in Mature Leaves of Rice Plants Grown at a Free-Air CO2 Enrichment Site. Frontiers in Plant Science, 2020, 11, 786.	1.7	3
57	Effect of foliar spray of kinetin on the enhancement of rice yield by elevated CO 2. Journal of Agronomy and Crop Science, 2021, 207, 535-543.	1.7	2
58	Heat-Mitigation Effects of Irrigated Rice-Paddy Fields Under Changing Atmospheric Carbon Dioxide Based on a Coupled Atmosphere and Crop Energy-Balance Model. Boundary-Layer Meteorology, 2021, 179, 447-476.	1.2	2
59	Fertilizer-derived nitrogen use of two varieties of single-crop paddy rice: a free-air carbon dioxide enrichment study using polymer-coated 15N-labeled urea. Soil Science and Plant Nutrition, 0, , 1-12.	0.8	2
60	Low N level increases the susceptibility of <scp>PSI</scp> to photoinhibition induced by short repetitive flashes in leaves of different rice varieties. Physiologia Plantarum, 2022, 174, e13644.	2.6	2