
jilai Gong

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9474558/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Evaluation methods for assessing effectiveness of in situ remediation of soil and sediment contaminated with organic pollutants and heavy metals. Environment International, 2017, 105, 43-55.	10.0	379
2	Various cell architectures of capacitive deionization: Recent advances and future trends. Water Research, 2019, 150, 225-251.	11.3	298
3	Mechanisms of peroxymonosulfate pretreatment enhancing production of short-chain fatty acids from waste activated sludge. Water Research, 2019, 148, 239-249.	11.3	188
4	Assessing the human health risks of perfluorooctane sulfonate by in vivo and in vitro studies. Environment International, 2019, 126, 598-610.	10.0	176
5	Antibacterial properties and mechanism of graphene oxide-silver nanocomposites as bactericidal agents for water disinfection. Archives of Biochemistry and Biophysics, 2016, 604, 167-176.	3.0	145
6	Responses of enzymatic activity and microbial communities to biochar/compost amendment in sulfamethoxazole polluted wetland soil. Journal of Hazardous Materials, 2020, 385, 121533.	12.4	131
7	Powerful combination of g-C3N4 and LDHs for enhanced photocatalytic performance: A review of strategy, synthesis, and applications. Advances in Colloid and Interface Science, 2019, 272, 101999.	14.7	127
8	Facile synthesis of In2S3/UiO-66 composite with enhanced adsorption performance and photocatalytic activity for the removal of tetracycline under visible light irradiation. Journal of Colloid and Interface Science, 2019, 535, 444-457.	9.4	120
9	Using nanomaterials to facilitate the phytoremediation of contaminated soil. Critical Reviews in Environmental Science and Technology, 2019, 49, 791-824.	12.8	90
10	Modeling the transport of sodium dodecyl benzene sulfonate in riverine sediment in the presence of multi-walled carbon nanotubes. Water Research, 2018, 129, 20-28.	11.3	84
11	Effect of multi-walled carbon nanotubes on phytotoxicity of sediments contaminated by phenanthrene and cadmium. Chemosphere, 2017, 172, 449-458.	8.2	82
12	Shellac-coated iron oxide nanoparticles for removal of cadmium(II) ions from aqueous solution. Journal of Environmental Sciences, 2012, 24, 1165-1173.	6.1	77
13	Adsorption of 17β-estradiol from aqueous solution by raw and direct/pre/post-KOH treated lotus seedpod biochar. Journal of Environmental Sciences, 2020, 87, 10-23.	6.1	69
14	Pyrite-mediated advanced oxidation processes: Applications, mechanisms, and enhancing strategies. Water Research, 2022, 211, 118048.	11.3	53
15	Carbon nanotube-based environmental technologies: the adopted properties, primary mechanisms, and challenges. Reviews in Environmental Science and Biotechnology, 2018, 17, 571-590.	8.1	48
16	The effect of UV exposure on conventional and degradable microplastics adsorption for Pb (II) in sediment. Chemosphere, 2022, 286, 131777.	8.2	47
17	Using graphdiyne (GDY) as a catalyst support for enhanced performance in organic pollutant degradation and hydrogen production: A review. Journal of Hazardous Materials, 2020, 398, 122957.	12.4	45
18	Smoked cigarette butts: Unignorable source for environmental microplastic fibers. Science of the Total Environment, 2021, 791, 148384.	8.0	40

jilai Gong

#	Article	IF	CITATIONS
19	Effects of carbon nanotubes on biodegradation of pollutants: Positive or negative?. Ecotoxicology and Environmental Safety, 2020, 189, 109914.	6.0	33
20	Influence of multi-walled carbon nanotubes on the microbial biomass, enzyme activity, and bacterial community structure in 2,4-dichlorophenol-contaminated sediment. Science of the Total Environment, 2020, 713, 136645.	8.0	32
21	The role of microplastics in altering arsenic fractionation and microbial community structures in arsenic-contaminated riverine sediments. Journal of Hazardous Materials, 2022, 433, 128801.	12.4	30
22	From nZVI to SNCs: development of a better material for pollutant removal in water. Environmental Science and Pollution Research, 2018, 25, 6175-6195.	5.3	26
23	Enhanced photocatalytic performance of magnetic multi-walled carbon nanotubes/cerium dioxide nanocomposite. Ecotoxicology and Environmental Safety, 2019, 171, 587-593.	6.0	25
24	Titanium dioxide nanotube arrays with silane coupling agent modification for heavy metal reduction and persistent organic pollutant degradation. New Journal of Chemistry, 2017, 41, 4377-4389.	2.8	22
25	The combined toxicity and mechanism of multi-walled carbon nanotubes and nano copper oxide toward freshwater algae: Tetradesmus obliquus. Journal of Environmental Sciences, 2022, 112, 376-387.	6.1	17
26	Effects of hydroxyl, carboxyl, and amino functionalized carbon nanotubes on the functional diversity of microbial community in riverine sediment. Chemosphere, 2021, 262, 128053.	8.2	15
27	Mutual effects of silver nanoparticles and antimony(iii)/(v) co-exposed to Glycine max (L.) Merr. in hydroponic systems: uptake, translocation, physiochemical responses, and potential mechanisms. Environmental Science: Nano, 2020, 7, 2691-2707.	4.3	13
28	Impacts of typical engineering nanomaterials on the response of rhizobacteria communities and rice (Oryza sativa L.) growths in waterlogged antimony-contaminated soils. Journal of Hazardous Materials, 2022, 430, 128385.	12.4	13
29	Effects of virgin microplastics on the transport of Cd (II) in Xiangjiang River sediment. Chemosphere, 2021, 283, 131197.	8.2	12
30	Abiotic mediation of common ions on the co-exposure of CeO2 NPs with Sb (III) or Sb (V) to Glycine max (Linn.) Merrill. (Soybean): Impacts on uptake, accumulation and physiochemical characters. Environmental Pollution, 2020, 267, 115594.	7.5	11
31	Potential Interactions between Three Common Metal Oxide Nanoparticles and Antimony(III/V) Involving Their Uptake, Distribution, and Phytotoxicity to Soybean. ACS Sustainable Chemistry and Engineering, 2020, 8, 10125-10141.	6.7	11
32	Microwave-assisted high-efficiency degradation of methyl orange by using CuFe2O4/CNT catalysts and insight into degradation mechanism. Environmental Science and Pollution Research, 2021, 28, 42683-42693.	5.3	11
33	Biodegradable Microplastics Affect the Wheatgrass Traits, Fe Plaque Development Involved in Sb Accumulation, and Microbial Community Functions in Antimony-Contaminated Riparian Wetlands. ACS Sustainable Chemistry and Engineering, 2022, 10, 5847-5858.	6.7	11
34	The effects of biochar/compost for adsorption behaviors of sulfamethoxazole in amended wetland soil. Environmental Science and Pollution Research, 2021, 28, 49289-49301.	5.3	9
35	Evaluating the metabolic functional profiles of the microbial community and alfalfa (Medicago) Tj ETQq1 1 0.78 sediments. Journal of Hazardous Materials, 2021, 420, 126593.	34314 rgBT 12.4	/Overlock 10 7
36	Managing Fenton-treated sediment with biochar and sheep manure compost: Effects on the evolutionary characteristics of bacterial community. Journal of Environmental Management, 2022, 316, 115218.	7.8	6

#	Article	IF	CITATIONS
37	Sequestration of HCHs and DDTs in sediments in Dongting Lake of China with multiwalled carbon nanotubes: implication for in situ sequestration. Environmental Science and Pollution Research, 2017, 24, 7726-7739.	5.3	3
38	Saving China's onager. Science, 2019, 363, 701-701.	12.6	0
39	When chicken manure compost meets iron nanoparticles: an implication for the remediation of chlorophenothane-polluted riverine sediment. Environmental Science: Nano, 2022, 9, 1519-1529.	4.3	0