John A Pojman

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9473953/publications.pdf Version: 2024-02-01

ΙΟΗΝ Δ ΡΟΙΜΑΝ

#	Article	IF	CITATIONS
1	Anisotropic frontal polymerization in a model resin–copper composite. Chaos, 2022, 32, 013109.	1.0	6
2	Cure-on-Demand Composites by Frontal Polymerization. , 2022, , .		4
3	Charge transfer complexes as dual thermal/photo initiators for <scp>freeâ€radical</scp> frontal polymerization. Journal of Polymer Science, 2022, 60, 1624-1630.	2.0	8
4	Critical Role of Layer Thickness in Frontal Polymerization. Journal of Physical Chemistry B, 2022, 126, 3607-3618.	1.2	3
5	Microparticles and latexes prepared via suspension polymerization of a biobased vegetable oil and renewable carboxylic acid. Journal of Applied Polymer Science, 2021, 138, 50180.	1.3	2
6	A New Approach to Manufacturing with Frontal Polymerization to Generate Patterned Materials. ACS Central Science, 2021, 7, 534-535.	5.3	8
7	Front velocity dependence on vinyl ether and initiator concentration in <scp>radicalâ€induced</scp> cationic frontal polymerization of epoxies. Journal of Polymer Science, 2021, 59, 1678-1685.	2.0	18
8	Development of a Flow-free Gradient Generator Using a Self-Adhesive Thiol-acrylate Microfluidic Resin/Hydrogel (TAMR/H) Hybrid System. ACS Applied Materials & Interfaces, 2021, 13, 26735-26747.	4.0	12
9	Reaction-diffusion hydrogels from urease enzyme particles for patterned coatings. Communications Chemistry, 2021, 4, .	2.0	19
10	Rapid frontal polymerization achieved with thermally conductive metal strips. Chaos, 2021, 31, 073113.	1.0	11
11	Zinc chloride/acetamide deep eutectic solventâ€mediated fractionation of lignin produces high―and lowâ€molecularâ€weight fillers for phenolâ€formaldehyde resins. Journal of Applied Polymer Science, 2020, 137, 48385.	1.3	20
12	Thermal transport and chemical effects of fillers on <scp>freeâ€radical</scp> frontal polymerization. Journal of Polymer Science, 2020, 58, 2267-2277.	2.0	14
13	Kinetic Studies of Photopolymerization of Monomerâ€Containing Deep Eutectic Solvents. Macromolecular Chemistry and Physics, 2020, 221, 1900511.	1.1	17
14	Synthesis and characterization of thiolâ€acrylate hydrogels using a baseâ€catalyzed Michael addition for 3D cell culture applications. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 2020, 108, 2294-2307.	1.6	19
15	Frontal Polymerization of a Thin Film on a Wood Substrate. ACS Macro Letters, 2020, 9, 169-173.	2.3	16
16	Immobilization adjusted clock reaction in the urea–urease–H ⁺ reaction system. RSC Advances, 2019, 9, 3514-3519.	1.7	15
17	Influence of reaction-induced convection on quorum sensing in enzyme-loaded agarose beads. Chaos, 2019, 29, 033130.	1.0	11
18	The effect of acrylate functionality on frontal polymerization velocity and temperature. Journal of Polymer Science Part A, 2019, 57, 982-988.	2.5	21

#	Article	IF	CITATIONS
19	Mathematical modeling of frontal polymerization. Mathematical Modelling of Natural Phenomena, 2019, 14, 604.	0.9	7
20	Free-radical polymerizations of and in deep eutectic solvents: Green synthesis of functional materials. Progress in Polymer Science, 2018, 78, 139-153.	11.8	181
21	Skin glands of an aquatic salamander vary in size and distribution and release antimicrobial secretions effective against chytrid fungal pathogens. Journal of Experimental Biology, 2018, 221, .	0.8	17
22	Nonaqueous Synthesis of Macroporous Nanocomposites Using High Internal Phase Emulsion Stabilized by Nanohydroxyapatite. Advanced Materials Interfaces, 2017, 4, 1700094.	1.9	15
23	The effect of a crosslinking chemical reaction on pattern formation in viscous fingering of miscible fluids in a Hele–Shaw cell. Chaos, 2017, 27, 104614.	1.0	11
24	Effect of pseudo-gravitational acceleration on the dissolution rate of miscible drops. Chaos, 2017, 27, 104603.	1.0	3
25	Synthesis-Free Phase-Selective Gelator for Oil-Spill Remediation. ACS Applied Materials & Interfaces, 2017, 9, 33549-33553.	4.0	39
26	Cure-on-Demand Acrylamide Grout Using Frontal Polymerization. Journal of Materials in Civil Engineering, 2017, 29, .	1.3	1
27	Frontal Polymerization of Deep Eutectic Solvents Composed of Acrylic and Methacrylic Acids. Journal of Polymer Science Part A, 2017, 55, 4046-4050.	2.5	34
28	Dissipative structures and irreversibility in nature: Celebrating 100th birth anniversary of Ilya Prigogine (1917–2003). Chaos, 2017, 27, 104501.	1.0	14
29	Temporal Control of Gelation and Polymerization Fronts Driven by an Autocatalytic Enzyme Reaction. Angewandte Chemie, 2016, 128, 2167-2171.	1.6	33
30	Temporal Control of Gelation and Polymerization Fronts Driven by an Autocatalytic Enzyme Reaction. Angewandte Chemie - International Edition, 2016, 55, 2127-2131.	7.2	112
31	Sustainable-solvent-induced polymorphism in chitin films. Green Chemistry, 2016, 18, 4303-4311.	4.6	36
32	Zinc-based deep eutectic solvent-mediated hydroxylation and demethoxylation of lignin for the production of wood adhesive. RSC Advances, 2016, 6, 89599-89608.	1.7	58
33	Cureâ€onâ€demand wood adhesive based on the frontal polymerization of acrylates. Journal of Applied Polymer Science, 2016, 133, .	1.3	19
34	Deep-Eutectic Solvents as MWCNT Delivery Vehicles in the Synthesis of Functional Poly(HIPE) Nanocomposites for Applications as Selective Sorbents. ACS Applied Materials & Interfaces, 2016, 8, 31295-31303.	4.0	38
35	The apparently anomalous effects of surfactants on interfacial tension in the IBA/water system near its upper critical solution temperature. Colloid and Polymer Science, 2016, 294, 1425-1430.	1.0	3
36	<i>In vitro</i> evaluation of thermal frontally polymerized thiolâ€ene composites as bone augments. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 2016, 104, 1152-1160.	1.6	8

#	Article	IF	CITATIONS
37	Suspended Droplet Polymerization in an Unstable, Vibrating Shallow-Bed Reactor. Industrial & Engineering Chemistry Research, 2016, 55, 2493-2503.	1.8	5
38	Introduction to Focus Issue: Oscillations and Dynamic Instabilities in Chemical Systems: Dedicated to Irving R. Epstein on occasion of his 70th birthday. Chaos, 2015, 25, 064201.	1.0	1
39	Effects of shell crosslinking on polyurea microcapsules containing a freeâ€radical initiator. Journal of Applied Polymer Science, 2015, 132, .	1.3	12
40	Processing of lignin in urea–zinc chloride deep-eutectic solvent and its use as a filler in a phenol-formaldehyde resin. RSC Advances, 2015, 5, 28778-28785.	1.7	57
41	Synthesis and Characterization of Functionally Gradient Materials Obtained by Frontal Polymerization. ACS Applied Materials & Interfaces, 2015, 7, 3600-3606.	4.0	62
42	Porous monoliths synthesized <i>via</i> polymerization of styrene and divinyl benzene in nonaqueous deep-eutectic solvent-based HIPEs. RSC Advances, 2015, 5, 23255-23260.	1.7	44
43	Reconstruction by fluorescence imaging of the spatio-temporal evolution of the viscosity field in Hele-Shaw flows. Physics of Fluids, 2014, 26, .	1.6	6
44	Antimicrobial cytocompatible pentaerythritol triacrylateâ€coâ€ŧrimethylolpropane composite scaffolds for orthopaedic implants. Journal of Applied Polymer Science, 2014, 131, .	1.3	8
45	Europium-doped aluminum oxide phosphors as indicators for frontal polymerization dynamics. Chaos, 2014, 24, 023118.	1.0	2
46	Deep-eutectic solvents as a support in the nonaqueous synthesis of macroporous poly(HIPEs). RSC Advances, 2014, 4, 41584-41587.	1.7	36
47	Controlled release of lidocaine hydrochloride from polymerized drug-based deep-eutectic solvents. Journal of Materials Chemistry B, 2014, 2, 7495-7501.	2.9	65
48	Gelation and Cross-Linking in Multifunctional Thiol and Multifunctional Acrylate Systems Involving an <i>in Situ</i> Comonomer Catalyst. Macromolecules, 2014, 47, 821-829.	2.2	39
49	Frontal cationic curing of epoxy resins in the presence of defoaming or expanding compounds. Journal of Applied Polymer Science, 2014, 131, .	1.3	29
50	A study of the effects of thiols on the frontal polymerization and pot life of multifunctional acrylate systems with cumene hydroperoxide. Journal of Polymer Science Part A, 2013, 51, 3850-3855.	2.5	8
51	Deep eutectic solvents as both active fillers and monomers for frontal polymerization. Journal of Polymer Science Part A, 2013, 51, 1767-1773.	2.5	92
52	Fabrication and Characterization of Stable Hydrophilic Microfluidic Devices Prepared via the in Situ Tertiary-Amine Catalyzed Michael Addition of Multifunctional Thiols to Multifunctional Acrylates. ACS Applied Materials & Interfaces, 2013, 5, 1643-1655.	4.0	29
53	Thiolâ€acrylate nanocomposite foams for critical size bone defect repair: A novel biomaterial. Journal of Biomedical Materials Research - Part A, 2013, 101, 3531-3541.	2.1	22
54	pH Wave-Front Propagation in the Urea-Urease Reaction. Biophysical Journal, 2012, 103, 610-615.	0.2	43

#	Article	IF	CITATIONS
55	Preparation and application of microparticles prepared via the primary amineâ€catalyzed michael addition of a trithiol to a triacrylate. Journal of Polymer Science Part A, 2012, 50, 409-422.	2.5	33
56	Thermal frontal polymerization with a thermally released redox catalyst. Journal of Polymer Science Part A, 2012, 50, 2337-2343.	2.5	11
57	Electron paramagnetic resonance measurement of trapped radical concentrations in frontally polymerized and bulkâ€polymerized multifunctional (meth)acrylates. Journal of Polymer Science Part A, 2011, 49, 4261-4266.	2.5	3
58	Effects of thiols, lithium chloride, and ethoxylated monomers on the frontal polymerization of a triacrylate. Journal of Polymer Science Part A, 2011, 49, 4556-4561.	2.5	12
59	The effect of phase change materials on the frontal polymerization of a triacrylate. Physica D: Nonlinear Phenomena, 2010, 239, 838-847.	1.3	22
60	Frontal cationic curing of epoxy resins. Journal of Polymer Science Part A, 2010, 48, 2000-2005.	2.5	64
61	Timeâ€lapse thiolâ€acrylate polymerization using a pH clock reaction. Journal of Polymer Science Part A, 2010, 48, 2955-2959.	2.5	26
62	Base-Catalyzed Feedback in the Ureaâ^'Urease Reaction. Journal of Physical Chemistry B, 2010, 114, 14059-14063.	1.2	88
63	Numerical Simulations of Convection Induced by Korteweg Stresses in a Miscible Polymer–Monomer System: Effects of Variable Transport Coefficients, Polymerization Rate and Volume Changes. Microgravity Science and Technology, 2009, 21, 225-237.	0.7	16
64	Nonlinear Chemical Dynamics In Synthetic Polymer Systems. NATO Science for Peace and Security Series A: Chemistry and Biology, 2009, , 221-240.	0.5	3
65	Photopolymerization kinetics of tributylmethylammoniumâ€based (meth)acrylate ionic liquids and the effect of water. Journal of Polymer Science Part A, 2008, 46, 3766-3773.	2.5	30
66	The effect of a trithiol and inorganic fillers on the photoâ€induced thermal frontal polymerization of a triacrylate. Journal of Polymer Science Part A, 2008, 46, 8091-8096.	2.5	51
67	Studying diffusion of partially miscible and systems near their consolute point by laser line deflection. Optics and Lasers in Engineering, 2008, 46, 893-899.	2.0	10
68	Neutron Scattering Study of the Structural Change Induced by Photopolymerization of AOT/D ₂ O/Dodecyl Acrylate Inverse Microemulsions. Langmuir, 2008, 24, 13694-13700.	1.6	13
69	Determination of the diffusion coefficient between corn syrup and distilled water using a digital camera. American Journal of Physics, 2007, 75, 903-906.	0.3	17
70	Snell's law of refraction observed in thermal frontal polymerization. Chaos, 2007, 17, 033125.	1.0	13
71	Evidence for the Existence of an Effective Interfacial Tension between Miscible Fluids. 2. Dodecyl Acrylateâ^'Poly(dodecyl acrylate) in a Spinning Drop Tensiometer. Langmuir, 2007, 23, 5522-5531.	1.6	63
72	Humidityâ€responsive polymeric films based on AOTâ€water reverse microemulsions. Journal of Applied Polymer Science, 2007, 106, 1957-1963.	1.3	3

#	Article	IF	CITATIONS
73	Facile synthesis of poly(hydroxyethyl acrylate) by frontal free-radical polymerization. Journal of Polymer Science Part A, 2007, 45, 873-881.	2.5	47
74	Frontal polymerization with monofunctional and difunctional ionic liquid monomers. Journal of Polymer Science Part A, 2007, 45, 2745-2754.	2.5	50
75	Photopolymerization kinetics of ionic liquid monomers derived from the neutralization reaction between trialkylamines and acid-containing (meth)acrylates. Journal of Polymer Science Part A, 2007, 45, 3009-3021.	2.5	40
76	First solventâ€free synthesis of poly(<i>N</i> â€methylolacrylamide) via frontal freeâ€radical polymerization. Journal of Polymer Science Part A, 2007, 45, 4322-4330.	2.5	60
77	Polymeric nanocomposites containing polyhedral oligomeric silsesquioxanes prepared via frontal polymerization. Journal of Polymer Science Part A, 2007, 45, 4514-4521.	2.5	49
78	Miscible Fluids in Microgravity (MFMG): A zero-upmass investigation on the International Space Station. Microgravity Science and Technology, 2007, 19, 33-41.	0.7	22
79	Evidence for the Existence of an Effective Interfacial Tension between Miscible Fluids:Â Isobutyric Acidâ^'Water and 1-Butanolâ^'Water in a Spinning-Drop Tensiometer. Langmuir, 2006, 22, 2569-2577.	1.6	88
80	Frontal free-radical copolymerization of urethane–acrylates. Journal of Polymer Science Part A, 2006, 44, 3018-3024.	2.5	43
81	lsothermal frontal polymerization: Confirmation of the isothermal nature of the process and the effect of oxygen and polymer seed molecular weight on front propagation. Journal of Polymer Science Part A, 2006, 44, 3601-3608.	2.5	25
82	Spherically propagating thermal polymerization fronts. Journal of Polymer Science Part A, 2006, 44, 1387-1395.	2.5	25
83	The role of gravity in the motion of plasma arcs inside â€~Plasma Balls': An investigation in the NASA reduced gravity student flight opportunities program. Microgravity Science and Technology, 2006, 18, 39-43.	0.7	0
84	Free-Radical Frontal Polymerization with a Microencapsulated Initiator:Â Characterization of Microcapsules and Their Effect on Pot Life, Front Velocity, and Mechanical Properties. Macromolecules, 2006, 39, 55-63.	2.2	47
85	Numerical simulations of convection induced by Korteweg stresses in miscible polymermonomer systems. Microgravity Science and Technology, 2005, 17, 8-12.	0.7	15
86	Polyurethane-nanosilica hybrid nanocomposites synthesized by frontal polymerization. Journal of Polymer Science Part A, 2005, 43, 1670-1680.	2.5	98
87	Isothermal frontal polymerization: Confirmation of the mechanism and determination of factors affecting the front velocity, front shape, and propagation distance with comparison to mathematical modeling. Journal of Polymer Science Part A, 2005, 43, 5774-5786.	2.5	38
88	Measuring the Mutual Diffusion Coefficient for Dodecyl Acrylate in Low Molecular Weight Poly(dodecyl acrylate) with Laser Line Deflection (Wiener's Method) and the Fluorescence of Pyrene. Journal of Physical Chemistry B, 2005, 109, 11842-11849.	1.2	24
89	UV-Induced Frontal Polymerization of Multifunctional (Meth)acrylates. Macromolecules, 2005, 38, 5506-5512.	2.2	138
90	Binary frontal polymerization: Velocity dependence on initial composition. E-Polymers, 2004, 4, .	1.3	2

#	Article	IF	CITATIONS
91	Free-Radical Frontal Polymerization with a Microencapsulated Initiator. Macromolecules, 2004, 37, 6670-6672.	2.2	39
92	Frontal Polymerization with Thiolâ^'Ene Systems. Macromolecules, 2004, 37, 691-693.	2.2	85
93	Free-Radical Frontal Copolymerization: The Dependence of the Front Velocity on the Monomer Feed Composition and Reactivity Ratios. Macromolecular Theory and Simulations, 2003, 12, 276-286.	0.6	36
94	Polymer-dispersed liquid-crystal materials fabricated with frontal polymerization. Journal of Polymer Science Part A, 2003, 41, 204-212.	2.5	69
95	Evolution of Isothermal Polymerization Fronts via Laser Line Deflection and Predictive Modeling. ACS Symposium Series, 2003, , 169-183.	0.5	6
96	Nonlinear Dynamics in Frontal Polymerization. ACS Symposium Series, 2003, , 106-120.	0.5	9
97	Nonlinear Dynamics and Polymeric Systems: An Overview. ACS Symposium Series, 2003, , 2-15.	0.5	1
98	The effect of reactor geometry on frontal polymerization spin modes. Chaos, 2002, 12, 56-65.	1.0	45
99	Convection induced by composition gradients in miscible systems. Comptes Rendus - Mecanique, 2002, 330, 353-358.	2.1	16
100	Effect of orientation on thermoset frontal polymerization. Journal of Polymer Science Part A, 2002, 40, 3504-3508.	2.5	28
101	Frontal Ring-Opening Metathesis Polymerization of Dicyclopentadiene. Macromolecules, 2001, 34, 6539-6541.	2.2	163
102	Bubble Behavior in Frontal Polymerization:Results from KC-135 Parabolic Flights. ACS Symposium Series, 2001, , 112-125.	0.5	6
103	Optical gradient materials produced via low-temperature isothermal frontal polymerization. Journal of Applied Polymer Science, 2001, 80, 686-691.	1.3	29
104	Magnetic resonance imaging of spiral patterns in crosslinked polymer gels produced via frontal polymerization. Journal of Polymer Science Part A, 2001, 39, 1075-1080.	2.5	18
105	Polymer Processing in Microgravity: An Overview. ACS Symposium Series, 2001, , 2-15.	0.5	3
106	Solvent-free synthesis of polyacrylamide by frontal polymerization. Journal of Polymer Science Part A, 2000, 38, 1129-1135.	2.5	108
107	Preparation of functionally gradient materials via frontal polymerization. Journal of Applied Polymer Science, 2000, 78, 2398-2404.	1.3	129
108	Gas-free initiators for high-temperature free-radical polymerization. Journal of Polymer Science Part A, 2000, 38, 3984-3990.	2.5	33

#	Article	IF	CITATIONS
109	Preparation of functionally gradient materials via frontal polymerization. , 2000, 78, 2398.		3
110	Period-doubling behavior in frontal polymerization of multifunctional acrylates. Chaos, 1999, 9, 315-322.	1.0	51
111	Self Organization in Synthetic Polymeric Systems. Annals of the New York Academy of Sciences, 1999, 879, 194-214.	1.8	9
112	Polymerization Coupled To Oscillating Reactions:  (1) A Mechanistic Investigation of Acrylonitrile Polymerization in the Belousovâ^'Zhabotinsky Reaction in a Batch Reactor. Journal of the American Chemical Society, 1999, 121, 7373-7380.	6.6	53
113	Studying Nonlinear Dynamics with Numerical Experiments: Dynamics.mcd. Journal of Chemical Education, 1999, 76, 1310.	1.1	1
114	Overview: Nonlinear dynamics related to polymeric systems. Chaos, 1999, 9, 255-259.	1.0	33
115	Free radical-scavenging dyes as indicators of frontal polymerization dynamics. Journal of the Chemical Society, Faraday Transactions, 1998, 94, 919-922.	1.7	30
116	The effect of convection on a propagating front with a liquid product: Comparison of theory and experiments. Chaos, 1998, 8, 520-529.	1.0	51
117	Convective Chemical Fronts in the 1,4-Cyclohexanedioneâ^'Bromateâ^'Sulfuric Acidâ^'Ferroin System. Journal of Physical Chemistry A, 1998, 102, 9136-9141.	1.1	22
118	Frontal Dispersion Polymerization. Journal of Physical Chemistry B, 1998, 102, 3927-3929.	1.2	49
119	Single-head spin modes in frontal polymerization. Chaos, 1998, 8, 285-289.	1.0	36
120	An Introduction to Nonlinear Chemical Dynamics. , 1998, , .		862
121	Numerical modeling of self-propagating polymerization fronts: The role of kinetics on front stability. Chaos, 1997, 7, 331-340.	1.0	45
122	Mathematical Modeling of Free-Radical Polymerization Fronts. Journal of Physical Chemistry B, 1997, 101, 3474-3482.	1.2	106
123	Propagating Fronts of Polymerization in the Physical Chemistry Laboratory. Journal of Chemical Education, 1997, 74, 727.	1.1	13
124	Effect of Convection on a Propagating Front with a Solid Product:Â Comparison of Theory and Experiments. Journal of Physical Chemistry B, 1997, 101, 678-686.	1.2	68
125	Frontal Polymerization: Self-Propagating High-Temperature Synthesis of Polymeric Materials. ACS Symposium Series, 1997, , 220-235.	0.5	1
126	Binary frontal polymerization: A new method to produce simultaneous interpenetrating polymer networks (SINs). Journal of Polymer Science Part A, 1997, 35, 227-230.	2.5	97

#	Article	IF	CITATIONS
127	Frontal curing of epoxy resins: Comparison of mechanical and thermal properties to batch-cured materials. Journal of Applied Polymer Science, 1997, 66, 1209-1216.	1.3	115
128	Free-radical frontal polymerization: self-propagating thermal reaction waves. Journal of the Chemical Society, Faraday Transactions, 1996, 92, 2825.	1.7	227
129	Frontal Polymerization in Solution. Journal of the American Chemical Society, 1996, 118, 3783-3784.	6.6	105
130	The true molecular weight distributions of acrylate polymers formed in propagating fronts. Journal of Polymer Science Part A, 1996, 34, 991-995.	2.5	25
131	Double-Diffusive Convection in Traveling Waves in the Iodateâ^'Sulfite System Explained. The Journal of Physical Chemistry, 1996, 100, 16209-16212.	2.9	32
132	Thermochromic composites and propagating polymerization fronts. Advanced Materials, 1995, 7, 1038-1040.	11.1	28
133	Theoretical aspects of self-propagating reaction fronts in condensed medium. AICHE Journal, 1995, 41, 2631-2636.	1.8	7
134	Factors affecting propagating fronts of addition polymerization: Velocity, front curvature, temperatue profile, conversion, and molecular weight distribution. Journal of Polymer Science Part A, 1995, 33, 643-652.	2.5	98
135	Spin mode instabilities in propagating fronts of polymerization. Physica D: Nonlinear Phenomena, 1995, 84, 260-268.	1.3	60
136	Traveling Waves in the Iodate-Sulfite and Bromate-Sulfite Systems. The Journal of Physical Chemistry, 1995, 99, 5379-5384.	2.9	49
137	Periodic Convection in the Bromate-Sulfite Reaction: A "Jumping" Wave. The Journal of Physical Chemistry, 1995, 99, 5385-5388.	2.9	27
138	Thermochromic Composite Prepared via a Propagating Polymerization Front. Journal of the American Chemical Society, 1995, 117, 3611-3612.	6.6	98
139	Chemical Waves in the Iodide-Nitric Acid System. The Journal of Physical Chemistry, 1994, 98, 6030-6037.	2.9	37
140	Traveling fronts of addition polymerization with a solid monomer. Journal of the American Chemical Society, 1993, 115, 11044-11045.	6.6	75
141	Multicomponent convection induced by fronts in the chlorate-sulfite reaction. The Journal of Physical Chemistry, 1993, 97, 3443-3449.	2.9	34
142	Convective instabilities in traveling fronts of addition polymerization. The Journal of Physical Chemistry, 1992, 96, 7466-7472.	2.9	118
143	Periodic polymerization of acrylonitrile in the cerium-catalyzed Belousov-Zhabotinskii reaction. Journal of the American Chemical Society, 1992, 114, 8298-8299.	6.6	43
144	Traveling fronts of methacrylic acid polymerization. Journal of the American Chemical Society, 1991, 113, 6284-6286.	6.6	194

#	Article	IF	CITATIONS
145	Convective effects on chemical waves. 1. Mechanisms and stability criteria. The Journal of Physical Chemistry, 1990, 94, 4966-4972.	2.9	189