Alexei V Samsonovich

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9473753/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	A Virtual Clown Behavior Model Based on Emotional Biologically Inspired Cognitive Architecture. Studies in Computational Intelligence, 2022, , 99-108.	0.7	2
2	Classification and Generation of Virtual Dancer Social Behaviors Based on Deep Learning in a Simple Virtual Environment Paradigm. Studies in Computational Intelligence, 2022, , 231-242.	0.7	0
3	One Possibility of a Neuro-Symbolic Integration. Studies in Computational Intelligence, 2022, , 428-437.	0.7	Ο
4	Virtual partner dance as a paradigm for empirical study of cognitive models of emotional intelligence. Procedia Computer Science, 2021, 190, 414-433.	1.2	4
5	Toward a socially acceptable model of emotional artificial intelligence. Procedia Computer Science, 2021, 190, 771-788.	1.2	5
6	Virtual Convention Center: A Socially Emotional Online/VR Conference Platform. Advances in Intelligent Systems and Computing, 2021, , 435-445.	0.5	1
7	The Loop of Nonverbal Communication Between Human and Virtual Actor: Mapping Between Spaces. Advances in Intelligent Systems and Computing, 2021, , 484-489.	0.5	2
8	Empirical and modeling study of emotional state dynamics in social videogame paradigms. Cognitive Systems Research, 2020, 60, 44-56.	1.9	13
9	Socially emotional brain-inspired cognitive architecture framework for artificial intelligence. Cognitive Systems Research, 2020, 60, 57-76.	1.9	58
10	Virtual Listener: A Turing-like test for behavioral believability. Procedia Computer Science, 2020, 169, 892-899.	1.2	8
11	Creative virtual composer assistant based on the eBICA framework. Procedia Computer Science, 2020, 169, 606-614.	1.2	1
12	Emotional BICA for non-player characters: New empirical data. Procedia Computer Science, 2020, 169, 412-422.	1.2	2
13	Neuro-Correlates of the eBICA Model. Advances in Intelligent Systems and Computing, 2020, , 532-537.	0.5	1
14	Psychological Portrait of a Virtual Agent in the Teleport Game Paradigm. Lecture Notes in Computer Science, 2020, , 327-336.	1.0	1
15	Functional Neural Networks in Behavioral Motivations. Studies in Computational Intelligence, 2019, , 274-283.	0.7	1
16	Intellectual Agents Based on a Cognitive Architecture Supporting Humanlike Social Emotionality and Creativity. Studies in Computational Intelligence, 2019, , 39-50.	0.7	3
17	Designing an Emotionally-Intelligent Assistant of a Virtual Dance Creator. Advances in Intelligent Systems and Computing, 2019, , 197-202.	0.5	4
18	The Principle of Implementing an Assistant Composer. Studies in Computational Intelligence, 2019, , 300-304.	0.7	2

ALEXEI V SAMSONOVICH

#	Article	IF	CITATIONS
19	Semantic-Map-Based Approach to Designing an Insight Problem Solving Assistant. Procedia Computer Science, 2018, 123, 258-264.	1.2	2
20	Toward a Virtual Composer Assistant. Procedia Computer Science, 2018, 123, 553-561.	1.2	8
21	Virtual Actor with Social-Emotional Intelligence. Procedia Computer Science, 2018, 123, 76-85.	1.2	15
22	A Conceptually Different Approach to the Empirical Test of Alan Turing. Procedia Computer Science, 2018, 123, 512-521.	1.2	4
23	On semantic map as a key component in socially-emotional BICA. Biologically Inspired Cognitive Architectures, 2018, 23, 1-6.	0.9	26
24	Designing a Creative Assistant of a Designer. Procedia Computer Science, 2018, 123, 212-220.	1.2	1
25	Comparative Study of Semantic Mapping of Images. Procedia Computer Science, 2018, 123, 47-56.	1.2	4
26	Analyzing Weak Semantic Map of Word Senses. Procedia Computer Science, 2018, 123, 140-148.	1.2	5
27	Model of communication and coordination in a capture-the-flag paradigm. Procedia Computer Science, 2018, 145, 72-76.	1.2	2
28	Emotion in the Common Model of Cognition. Procedia Computer Science, 2018, 145, 740-746.	1.2	15
29	Virtual pet powered by a socially-emotional BICA. Procedia Computer Science, 2018, 145, 564-571.	1.2	4
30	Schema formalism for the common model of cognition. Biologically Inspired Cognitive Architectures, 2018, 26, 1-19.	0.9	12
31	Semantic-map-based analysis of insight problem solving. Biologically Inspired Cognitive Architectures, 2018, 25, 37-42.	0.9	8
32	A Roadmap to Emotionally Intelligent Creative Virtual Assistants. Advances in Intelligent Systems and Computing, 2018, , 47-56.	0.5	0
33	A Test for Believable Social Emotionality in Virtual Actors. Procedia Computer Science, 2016, 88, 450-458.	1.2	5
34	MAPPED Repository: An information System for the Emerging Unified Community of Researchers in Cognitive, Neuro and Computer Sciences. Procedia Computer Science, 2016, 88, 522-527.	1.2	1
35	Weak Semantic Map of the Russian Language: Preliminary Results. Procedia Computer Science, 2016, 88, 538-543.	1.2	1
36	Toward a BICA-Model-Based Study of Cognition Using Brain Imaging Techniques. Procedia Computer Science, 2015, 71, 254-264.	1.2	8

ALEXEI V SAMSONOVICH

#	Article	IF	CITATIONS
37	Cognitive Processes in Preparation for Problem Solving. Procedia Computer Science, 2015, 71, 235-247.	1.2	2
38	Empirical Measure of Learnability: A Tool for Semantic Map Validation. Procedia Computer Science, 2015, 71, 265-270.	1.2	2
39	Universal Dimensions of Meaning Derived from Semantic Relations among Words and Senses: Mereological Completeness vs. Ontological Generality. Computation, 2014, 2, 61-82.	1.0	4
40	The Informational Reality Commentary on Igor Aleksander and Helen Morton's — "Aristotle's Laptop: The Discovery of Our Informational Mind". International Journal of Machine Consciousness, 2014, 06, 49-53.	1.0	2
41	Semantic cross-correlation as a measure of social interaction. Biologically Inspired Cognitive Architectures, 2014, 7, 1-8.	0.9	4
42	Goal reasoning as a general form of metacognition in BICA. Biologically Inspired Cognitive Architectures, 2014, 9, 105-122.	0.9	7
43	Emotional biologically inspired cognitive architecture. Biologically Inspired Cognitive Architectures, 2013, 6, 109-125.	0.9	59
44	A spiking-network cognitive architecture inspired by the hippocampus. Biologically Inspired Cognitive Architectures, 2013, 3, 13-26.	0.9	3
45	Editorial: Special volume on BICA 2013. Biologically Inspired Cognitive Architectures, 2013, 6, 1-2.	0.9	1
46	Augmenting Weak Semantic Cognitive Maps with an "Abstractness―Dimension. Computational Intelligence and Neuroscience, 2013, 2013, 1-10.	1.1	23
47	Extending Cognitive Architectures. Advances in Intelligent Systems and Computing, 2013, , 41-49.	0.5	0
48	On a roadmap for the BICA Challenge. Biologically Inspired Cognitive Architectures, 2012, 1, 100-107.	0.9	62
49	Mapping the Landscape of Human‣evel Artificial General Intelligence. Al Magazine, 2012, 33, 25-41.	1.4	98
50	Toward a semantic general theory of everything. Complexity, 2010, 15, 12-18.	0.9	14
51	THE B-I-C-A OF BIOLOGICALLY INSPIRED COGNITIVE ARCHITECTURES. International Journal of Machine Consciousness, 2010, 02, 171-192.	1.0	7
52	IS IT TIME FOR THE NEW COGNITIVE REVOLUTION?. International Journal of Machine Consciousness, 2010, 02, 55-58.	1.0	0
53	Principal Semantic Components of Language and the Measurement of Meaning. PLoS ONE, 2010, 5, e10921.	1.1	28
54	THE MENTAL STATE FORMALISM OF GMU-BICA. International Journal of Machine Consciousness, 2009, 01, 111-130.	1.0	25

#	Article	IF	CITATIONS
55	Why BICA is Necessary for AGI. , 2009, , .		0
56	Issues in Applying Bio-Inspiration, Cognitive Critical Mass and Developmental-Inspired Principles to Advanced Intelligent Systems. , 2009, , 67-92.		0
57	Science of the Conscious Mind. Biological Bulletin, 2008, 215, 204-215.	0.7	12
58	Morphological homeostasis in cortical dendrites. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 1569-1574.	3.3	62
59	Algorithmic description of hippocampal granule cell dendritic morphology. Neurocomputing, 2005, 65-66, 253-260.	3.5	8
60	Statistical determinants of dendritic morphology in hippocampal pyramidal neurons: A hidden Markov model. Hippocampus, 2005, 15, 166-183.	0.9	49
61	Hallucinating objects versus hallucinating subjects. Behavioral and Brain Sciences, 2005, 28, 772-773.	0.4	6
62	Pricing the 'free lunch' of meta-evolution. , 2005, , .		4
63	A simple neural network model of the hippocampus suggesting its pathfinding role in episodic memory retrieval. Learning and Memory, 2005, 12, 193-208.	0.5	78
64	The Conscious Self: Ontology, Epistemology and the Mirror Quest. Cortex, 2005, 41, 621-636.	1.1	24
65	Fundamental Principles and Mechanisms of the Conscious Self. Cortex, 2005, 41, 669-689.	1.1	56
66	Statistical morphological analysis of hippocampal principal neurons indicates cell-specific repulsion of dendrites from their own cell. Journal of Neuroscience Research, 2003, 71, 173-187.	1.3	47
67	Multiple trace theory of human memory: Computational, neuroimaging, and neuropsychological results. Hippocampus, 2000, 10, 352-368.	0.9	466