Pedro DomÃ-nguez Luengo

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9473598/publications.pdf

Version: 2024-02-01

		430874	414414
32	1,158	18	32
papers	citations	h-index	g-index
22	22	22	1204
33	33	33	1204
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Targeted disruption of the biglycan gene leads to an osteoporosis-like phenotype in mice. Nature Genetics, 1998, 20, 78-82.	21.4	543
2	5-Aminolevulinate synthase mRNA levels in the Harderian gland of Syrian hamsters: Correlation with porphyrin concentrations and regulation by androgens and melatonin. Molecular and Cellular Endocrinology, 1991, 80, 177-182.	3.2	52
3	Demonstration of Physical Proximity between the N Terminus and the S4-S5 Linker of the Human ether-Ã-go-go-related Gene (hERG) Potassium Channel. Journal of Biological Chemistry, 2011, 286, 19065-19075.	3.4	50
4	Cytoplasmic Domains and Voltage-Dependent Potassium Channel Gating. Frontiers in Pharmacology, 2012, 3, 49.	3.5	42
5	Gs Couples Thyrotropin-releasing Hormone Receptors Expressed in Xenopus Oocytes to Phospholipase C. Journal of Biological Chemistry, 1995, 270, 3554-3559.	3.4	35
6	Cloning of a Syrian hamster cDNA related to sexual dimorphism: establishment of a new family of proteins. FEBS Letters, 1995, 376, 257-261.	2.8	33
7	Thermodynamic and Kinetic Properties of Amino-Terminal and S4-S5 Loop HERG Channel Mutants under Steady-State Conditions. Biophysical Journal, 2008, 94, 3893-3911.	0.5	32
8	Na+/H+ exchange is present in basolateral membranes from rabbit small intestine. Biochemical and Biophysical Research Communications, 1986, 134, 827-834.	2.1	31
9	Molecular Determinants of Interactions between the N-Terminal Domain and the Transmembrane Core That Modulate hERG K+ Channel Gating. PLoS ONE, 2011, 6, e24674.	2.5	30
10	Gating mechanism of Kv11.1 (hERG) K+ channels without covalent connection between voltage sensor and pore domains. Pflugers Archiv European Journal of Physiology, 2018, 470, 517-536.	2.8	28
11	New Structures and Gating of Voltage-Dependent Potassium (Kv) Channels and Their Relatives: A Multi-Domain and Dynamic Question. International Journal of Molecular Sciences, 2019, 20, 248.	4.1	28
12	Specificity of TRH receptor coupling to G-proteins for regulation of ERG K+channels in GH3rat anterior pituitary cells. Journal of Physiology, 2005, 566, 717-736.	2.9	24
13	The EAG Voltage-Dependent K+ Channel Subfamily: Similarities and Differences in Structural Organization and Gating. Frontiers in Pharmacology, 2020, 11, 411.	3.5	24
14	FRET with multiply labeled HERG K+ channels as a reporter of the in vivo coarse architecture of the cytoplasmic domains. Biochimica Et Biophysica Acta - Molecular Cell Research, 2008, 1783, 1681-1699.	4.1	21
15	The activation of adenylate cyclase from small intestinal epithelium by cholera toxin. FEBS Journal, 1985, 146, 533-538.	0.2	20
16	Mapping of interactions between the N- and C-termini and the channel core in HERG K+ channels. Biochemical Journal, 2013, 451, 463-474.	3.7	20
17	Androgen regulation of gene expression in the Syrian hamster Harderian gland. Molecular and Cellular Endocrinology, 1994, 106, 81-89.	3.2	19
18	Protein kinase C from small intestine epithelial cells. Biochemical and Biophysical Research Communications, 1986, 139, 875-882.	2.1	18

#	Article	IF	CITATIONS
19	Effects of Human Chorionic Gonadotropin and Progesterone Administration on Porphyrin Biosynthesis and Histology of the Harderian Glands in Male and Female Syrian Hamsters1. Biology of Reproduction, 1992, 47, 307-315.	2.7	16
20	Interactions between the N-terminal tail and the gating machinery of hERG K+ channels both in closed and open/inactive states. Pflugers Archiv European Journal of Physiology, 2015, 467, 1747-1756.	2.8	15
21	Hormonal regulation of FHG22 mRNA in Syrian hamster Harderian glands: role of estradiol. Molecular and Cellular Endocrinology, 1996, 124, 87-96.	3.2	10
22	Participation of HERG channel cytoplasmic structures on regulation by the G protein-coupled TRH receptor. Pflugers Archiv European Journal of Physiology, 2009, 457, 1237-1252.	2.8	9
23	Relative positioning of Kv11.1 (hERG) K+ channel cytoplasmic domain-located fluorescent tags toward the plasma membrane. Scientific Reports, 2018, 8, 15494.	3.3	9
24	Functional characterization of Kv11.1 (hERG) potassium channels split in the voltage-sensing domain. Pflugers Archiv European Journal of Physiology, 2018, 470, 1069-1085.	2.8	8
25	Adenylate cyclase from rabbit small intestine: Activation by cholera toxin and interaction with calcium. Archives of Biochemistry and Biophysics, 1985, 239, 587-594.	3.0	7
26	Permeability properties of isolated enterocytes from rat small intestine. Biochimica Et Biophysica Acta - Molecular Cell Research, 1986, 889, 361-365.	4.1	7
27	Characterization and Cloning of Two Isoforms of Heteroglobin, a Novel Heterodimeric Glycoprotein of the Secretoglobin-Uteroglobin Family Showing Tissue-specific and Sex Differential Expression. Journal of Biological Chemistry, 2002, 277, 233-242.	3.4	7
28	lsolation and identification of sex-specific cDNA clones from the Syrian hamster Harderian gland. Microscopy Research and Technique, 1996, 34, 111-117.	2.2	6
29	ERK and RSK are necessary for TRH-induced inhibition of r-ERG potassium currents in rat pituitary GH 3 cells. Cellular Signalling, 2015, 27, 1720-1730.	3.6	5
30	Sequence Analysis and Androgen Regulation of MHG07 (Male Harderian Gland) mRNA in Male Hamster Harderian Gland. General and Comparative Endocrinology, 2000, 119, 132-139.	1.8	4
31	Cell type influences the molecular mechanisms involved in hormonal regulation of ERG K+ channels. Pflugers Archiv European Journal of Physiology, 2012, 463, 685-702.	2.8	3
32	Hormonal regulation and characterisation of the aldehyde oxidase-like gene of hamster Harderian gland. Journal of Steroid Biochemistry and Molecular Biology, 2008, 112, 157-163.	2.5	2