Gerardo Morell

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9473167/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Graphene Growth Directly on SiO2/Si by Hot Filament Chemical Vapor Deposition. Nanomaterials, 2022, 12, 109.	1.9	3
2	Magnetic Control of the Manganese Photoluminescence in Fe ₃ O ₄ / <scp>l</scp> -Cys ZnS:Mn Nanocomposites. ACS Omega, 2021, 6, 7598-7604.	1.6	6
3	BiFeO3 Coupled Polysulfide Trapping in C/S Composite Cathode Material for Li-S Batteries as Large Efficiency and High Rate Performance. Energies, 2021, 14, 8362.	1.6	3
4	Influence of copper doping on structural, morphological, optical, and vibrational properties of ZnO nanoparticles synthesized by sol gel method. Surfaces and Interfaces, 2020, 21, 100700.	1.5	15
5	Synthesis, Characterization and Fabrication of Graphene/Boron Nitride Nanosheets Heterostructure Tunneling Devices. Nanomaterials, 2019, 9, 925.	1.9	7
6	Field emission properties of carbon nanowalls prepared by RF magnetron sputtering. Applied Physics A: Materials Science and Processing, 2019, 125, 1.	1.1	5
7	Controlling the transverse proton relaxivity of magnetic graphene oxide. Scientific Reports, 2019, 9, 5633.	1.6	14
8	A Novel Approach to the Layer-Number-Controlled and Grain-Size-Controlled Growth of High Quality Graphene for Nanoelectronics. ACS Applied Nano Materials, 2018, 1, 1502-1512.	2.4	20
9	Straightforward Deposition of Uniform Boron Nitride Coatings by Chemical Vapor Deposition. MRS Advances, 2018, 3, 191-197.	0.5	4
10	A graphene integrated highly transparent resistive switching memory device. APL Materials, 2018, 6, .	2.2	26
11	Synthesis, Optical, and Magnetic Properties of Graphene Quantum Dots and Iron Oxide Nanocomposites. Advances in Materials Science and Engineering, 2018, 2018, 1-8.	1.0	16
12	Graphene Oxide/ZnS:Mn Nanocomposite Functionalized with Folic Acid as a Nontoxic and Effective Theranostic Platform for Breast Cancer Treatment. Nanomaterials, 2018, 8, 484.	1.9	37
13	T ₁ - and T ₂ -weighted Magnetic Resonance Dual Contrast by Single Core Truncated Cubic Iron Oxide Nanoparticles with Abrupt Cellular Internalization and Immune Evasion. ACS Applied Bio Materials, 2018, 1, 79-89.	2.3	32
14	Grain size-dependent thermal conductivity of polycrystalline twisted bilayer graphene. Carbon, 2017, 117, 367-375.	5.4	38
15	Enhanced MRI T 2 Relaxivity in Contrast-Probed Anchor-Free PEGylated Iron Oxide Nanoparticles. Nanoscale Research Letters, 2017, 12, 312.	3.1	49
16	L-cysteine capped ZnS:Mn quantum dots for room-temperature detection of dopamine with high sensitivity and selectivity. Biosensors and Bioelectronics, 2017, 87, 693-700.	5.3	112
17	Improvement of Specific Capacitance in Lithium Ion Batteries By Mesoporous Carbon Hybrid Nanostructures. ECS Meeting Abstracts, 2017, , .	0.0	0
18	Silicon nanowires as electron field emitters. Series in Materials Science and Engineering, 2017, , 435-454.	0.1	0

#	Article	IF	CITATIONS
19	Improving cytotoxicity against cancer cells by chemo-photodynamic combined modalities using silver-graphene quantum dots nanocomposites. International Journal of Nanomedicine, 2016, 11, 107.	3.3	40
20	Novel magneto-luminescent effect in LSMO/ZnS:Mn nanocomposites at near-room temperature. Nanotechnology, 2016, 27, 085703.	1.3	17
21	Study on the optical and electrical properties of tetracyanoethylene doped bilayer graphene stack for transparent conducting electrodes. AIP Advances, 2016, 6, 035319.	0.6	11
22	Synthesis micro-scale boron nitride nanotubes at low substrate temperature. AIP Advances, 2016, 6, 075110.	0.6	6
23	Cold cathode emission studies on topographically modified few layer and single layer MoS2 films. Applied Physics Letters, 2016, 108, 043103.	1.5	9
24	Observation of the C 2 H radical using (1 + 2) REMPI via theB̃2A′â†X̃2Σ+transition. Chemical Physics, 2016 479, 91-98.	^{5,} 0.9	1
25	Solar-blind field-emission diamond ultraviolet detector. Applied Physics Letters, 2015, 107, .	1.5	38
26	Unipolar resistive switching in planar Pt/BiFeO3/Pt structure. AIP Advances, 2015, 5, .	0.6	25
27	Biocompatible ZnS:Mn quantum dots for reactive oxygen generation and detection in aqueous media. Journal of Nanoparticle Research, 2015, 17, 461.	0.8	32
28	Synergistic antibacterial activity of PEGylated silver–graphene quantum dots nanocomposites. Applied Materials Today, 2015, 1, 80-87.	2.3	126
29	Ferroelectric photovoltaic properties in doubly substituted (Bi0.9La0.1)(Fe0.97Ta0.03)O3 thin films. Applied Physics Letters, 2015, 106, .	1.5	35
30	Cytocompatibility of direct water synthesized cadmium selenide quantum dots in colo-205 cells. Journal of Nanoparticle Research, 2015, 17, 1.	0.8	3
31	Study of the Structural Changes Undergone by Hybrid Nanostructured Si-CNTs Employed as an Anode Material in a Rechargeable Lithium-Ion Battery. Journal of Physical Chemistry C, 2015, 119, 21125-21134.	1.5	25
32	Catalytic effect of ultrananocrystalline Fe ₃ O ₄ on algal bio-crude production <i>via</i> HTL process. Nanoscale, 2015, 7, 17664-17671.	2.8	28
33	Graphene/semiconductor silicon modified BiFeO3/indium tin oxide ferroelectric photovoltaic device for transparent self-powered windows. Applied Physics Letters, 2015, 107, .	1.5	24
34	Large-area bilayer graphene synthesis in the hot filament chemical vapor deposition reactor. Diamond and Related Materials, 2015, 51, 34-38.	1.8	23
35	Binder Free SnO ₂ -CNT Composite as Anode Material for Li-Ion Battery. Journal of Nanotechnology, 2014, 2014, 1-9.	1.5	7
36	Fringe structures and tunable bandgap width of 2D boron nitride nanosheets. Beilstein Journal of Nanotechnology, 2014, 5, 1186-1192.	1.5	14

#	Article	IF	CITATIONS
37	Photovoltaic properties of Aurivillius phase Bi ₅ FeTi ₃ O ₁₅ thin films grown by pulsed laser deposition. Applied Physics Letters, 2014, 105, 072908.	1.5	46
38	New route to the fabrication of nanocrystalline diamond films. Journal of Applied Physics, 2014, 115, 054304.	1.1	5
39	Effect of Poling on Photovoltaic Properties in Highly Oriented BiFeO ₃ Thin Films. Integrated Ferroelectrics, 2014, 157, 168-173.	0.3	6
40	Studies of the switchable photovoltaic effect in co-substituted BiFeO3 thin films. Applied Physics Letters, 2014, 105, .	1.5	35
41	Enhanced photoresponse in BiFeO3/SrRuO3 heterostructure. Journal of Alloys and Compounds, 2014, 609, 168-172.	2.8	25
42	Room temperature gas sensor based on tin dioxide-carbon nanotubes composite films. Sensors and Actuators B: Chemical, 2014, 190, 227-233.	4.0	113
43	Switchable photovoltaic effect in bilayer graphene/BiFeO3/Pt heterostructures. Applied Physics Letters, 2014, 105, .	1.5	39
44	Highly-crystalline Î ³ -MnS nanosaws. RSC Advances, 2014, 4, 38103-38110.	1.7	40
45	Single-Crystal γ-MnS Nanowires Conformally Coated with Carbon. ACS Applied Materials & Interfaces, 2014, 6, 1180-1186.	4.0	68
46	Ultrananocrystalline Diamond-Decorated Silicon Nanowire Field Emitters. ACS Applied Materials & Interfaces, 2014, 6, 13815-13822.	4.0	20
47	Physical properties of bifunctional BST/LSMO nanocomposites. Journal of Applied Physics, 2014, 115, .	1.1	27
48	Carbon nanotubes coated with diamond nanocrystals and silicon carbide by hot-filament chemical vapor deposition below 200 °C substrate temperature. Carbon, 2014, 75, 113-123.	5.4	10
49	Luminescent graphene quantum dots fabricated by pulsed laser synthesis. Carbon, 2013, 64, 341-350.	5.4	134
50	Growth and electron field-emission of single-crystalline ZnO nanowires. Materials Letters, 2013, 93, 326-329.	1.3	26
51	Synthesis and transport properties of La0.67Sr0.33MnO3 conformally-coated on carbon nanotubes. Carbon, 2013, 65, 252-260.	5.4	15
52	Single-step route to hierarchical flower-like carbon nanotube clusters decorated with ultrananocrystalline diamond. Carbon, 2013, 63, 253-262.	5.4	23
53	Stability of the Mn photoluminescence in bifunctional ZnS:0.05Mn nanoparticles. Journal of Applied Physics, 2013, 114, .	1.1	34
54	Advance in Novel Boron Nitride Nanosheets to Nanoelectronic Device Applications. ACS Applied Materials & Interfaces, 2013, 5, 5051-5056.	4.0	101

#	Article	lF	CITATIONS
55	Bifunctional Fe3O4/ZnS:Mn composite nanoparticles. Materials Letters, 2013, 98, 108-111.	1.3	28
56	Unipolar Resistive Switching and Associated Photoresponse in Sm doped BiFeO3 Thin Film Grown by RF Sputtering. Materials Research Society Symposia Proceedings, 2013, 1577, m1.	0.1	2
57	Fabrication of Nanodiamond Coating on Steel. Coatings, 2013, 3, 243-252.	1.2	10
58	High-Yield Synthesis of Cubic and Hexagonal Boron Nitride Nanoparticles by Laser Chemical Vapor Decomposition of Borazine. Dataset Papers in Nanotechnology, 2013, 2013, 1-5.	0.0	12
59	Spontaneously detaching self-standing diamond films. Diamond and Related Materials, 2012, 21, 99-102.	1.8	7
60	Bactericide and bacterial anti-adhesive properties of the nanocrystalline diamond surface. Diamond and Related Materials, 2012, 22, 77-81.	1.8	50
61	Single-step route to diamond-nanotube composite. Nanoscale Research Letters, 2012, 7, 535.	3.1	20
62	Growth of carbon nanotubes on spontaneously detached free standing diamond films and their field emission properties. Diamond and Related Materials, 2012, 30, 42-47.	1.8	18
63	Conformal coating of ferroelectric oxides on carbon nanotubes. Europhysics Letters, 2012, 97, 27001.	0.7	8
64	Genesis of diamond nanotubes from carbon nanotubes. Europhysics Letters, 2011, 95, 28002.	0.7	5
65	Free standing graphene-diamond hybrid films and their electron emission properties. Journal of Applied Physics, 2011, 110, .	1.1	45
66	Electron emission from diamond films seeded using kitchen-wrap polyethylene. Journal Physics D: Applied Physics, 2011, 44, 085502.	1.3	9
67	Studies of photovoltaic properties of nanocrystalline thin films of CdS–CdTe. Journal of Alloys and Compounds, 2011, 509, 10003-10006.	2.8	16
68	Ultraviolet photosensitivity of sulfur-doped micro- and nano-crystalline diamond. Journal of Applied Physics, 2011, 109, .	1.1	9
69	The 193 nm photodissociation of borazine. Chemical Physics Letters, 2011, 509, 108-113.	1.2	1
70	Photovoltaic effect in a wide-area semiconductor-ferroelectric device. Applied Physics Letters, 2011, 99, .	1.5	28
71	Atomic and Electronic Properties of Realizable Size Single-Crystal GaN Nanotubes by First Principles. Journal of Nanoscience and Nanotechnology, 2011, 11, 7753-7761.	0.9	8
72	SiN/bamboo like carbon nanotube composite electrodes for lithium ion rechargeable batteries. Electrochimica Acta, 2010, 55, 2269-2274.	2.6	17

#	Article	IF	CITATIONS
73	Silicon Encapsulated Carbon Nanotubes. Nanoscale Research Letters, 2010, 5, 74-80.	3.1	12
74	Growth and field emission study of a monolithic carbon nanotube/diamond composite. Carbon, 2010, 48, 3353-3358.	5.4	50
75	Semiconductor-homojunction induction in single-crystal GaN nanostructures under a transverse electric field: <i>Ab initio</i> calculations. Physical Review B, 2010, 81, .	1.1	13
76	8.4: A novel nanowire optical frequency rectifying diode: Application as an IR and optical sensor. , 2010, , .		0
77	Field emission stability and properties of simultaneously grown microcrystalline diamond and carbon nanostructure films. Journal of Vacuum Science and Technology B:Nanotechnology and Microelectronics, 2010, 28, 1202-1205.	0.6	5
78	Fabrication and field emission study of novel rod-shaped diamond-like carbon nanostructures. Nanotechnology, 2010, 21, 285301.	1.3	13
79	Temporal field emission current stability and fluctuations from graphene films. Applied Physics Letters, 2010, 97, .	1.5	20
80	Study of temporal current stability and fluctuations of field emitted electrons from ZnO nanostructure films. Applied Physics Letters, 2009, 95, 242103.	1.5	8
81	Probing the structural, crystalline, and electrical properties of carbon nanotubes grown on nickel filled carbon nanofibers. Applied Physics Letters, 2009, 95, 061906.	1.5	4
82	Growth and field emission properties of one-dimensional carbon composite structure consisting of vertically aligned carbon nanotubes and nanocones. Journal Physics D: Applied Physics, 2009, 42, 035409.	1.3	5
83	Modulation of Electron Transfer Activity at Diamond Films by Dissolved Oxygen in Aqueous Solution. Journal of the Electrochemical Society, 2009, 156, J152.	1.3	0
84	High-Yield Synthesis of Stoichiometric Boron Nitride Nanostructures. Journal of Nanomaterials, 2009, 2009, 1-6.	1.5	7
85	Synthesis of nanostructured SiC using the pulsed laser deposition technique. Materials Research Bulletin, 2009, 44, 184-188.	2.7	37
86	Secondary electron emission from nanocomposite carbon films. Journal of Materials Science: Materials in Electronics, 2009, 20, 996-1000.	1.1	0
87	Wettability of hydrogenated tetrahedral amorphous carbon. Diamond and Related Materials, 2009, 18, 43-50.	1.8	31
88	Synthesis of diamond nanocrystals on polyimide film. Diamond and Related Materials, 2009, 18, 113-116.	1.8	10
89	Thermionic emission energy distribution from nanocrystalline diamond films for direct thermal-electrical energy conversion applications. Journal of Applied Physics, 2009, 106, 043716.	1.1	22
90	Iron Oxide Nanoparticles Employed as Seeds for the Induction of Microcrystalline Diamond Synthesis. Nanoscale Research Letters, 2008, 3, .	3.1	8

#	Article	IF	CITATIONS
91	Porous silicon for field emission display applications. Physica Status Solidi C: Current Topics in Solid State Physics, 2008, 5, 3479-3483.	0.8	0
92	Detection of SH and CS radicals by cavity ringdown spectroscopy in a hot filament chemical vapor deposition environment. Chemical Physics Letters, 2008, 455, 26-31.	1.2	7
93	Synthesis of nanocrystalline diamond films by DC plasma-assisted argon-rich hot filament chemical vapor deposition. Diamond and Related Materials, 2008, 17, 55-59.	1.8	18
94	Synthesis of palladium with different nanoscale structures by sputtering deposition onto fiber templates. Journal of Nanophotonics, 2008, 2, 021925.	0.4	5
95	Nanocrystalline silicon as the light emitting material of a field emission display device. Nanotechnology, 2008, 19, 225202.	1.3	12
96	Study of the temporal current stability of field-emitted electrons from ultrananocrystalline diamond films. Journal of Applied Physics, 2008, 103, 104315.	1.1	9
97	Films of Bamboo-like Carbon Nanotubes as Electrode Material for Rechargeable Lithium Batteries. Journal of the Electrochemical Society, 2008, 155, A125.	1.3	10
98	Direct Deposition of Bamboo-Like Carbon Nanotubes on Copper Substrates by Sulfur-Assisted HFCVD. Journal of Nanomaterials, 2008, 2008, 1-7.	1.5	15
99	Study of Current Stability and Fluctuations of Field Emitted Electrons from ZnO Nanostructure. , 2008, , .		0
100	Effects of adsorbates on field emission reproducibility of sulfur-incorporated nanocomposite carbon films. Journal of Vacuum Science & Technology B, 2007, 25, 318.	1.3	7
101	Study of the structural evolutions of crystalline tungsten oxide films prepared using hot-filament CVD. Journal Physics D: Applied Physics, 2007, 40, 5239-5245.	1.3	23
102	Synthesis of diamond at sub 300°C substrate temperature. Diamond and Related Materials, 2007, 16, 1950-1957.	1.8	31
103	Nonlinear effects in collision cascades and high energy shock waves during ta-C:H growth. Journal of Applied Physics, 2007, 102, 013301.	1.1	5
104	Formation of lithium clusters and their effects on conductivity in diamond: A density functional theory study. Diamond and Related Materials, 2007, 16, 840-844.	1.8	5
105	Synthesis of unstrained failure-resistant nanocrystalline diamond films. Thin Solid Films, 2007, 515, 7906-7910.	0.8	7
106	Oxygen effect on the electrochemical behavior of n-type sulfur-doped diamond. Diamond and Related Materials, 2006, 15, 221-224.	1.8	5
107	Diamond film synthesis at low temperature. Diamond and Related Materials, 2006, 15, 109-116.	1.8	23
108	TOF MS studies concerning the synthesis of B-N and B-C-N nanaostructured materials by laser		0

ablation., 2006, 6261, 750.

#	Article	IF	CITATIONS
109	Synthesis, structure, and field emission properties of sulfur-doped nanocrystalline diamond. Journal of Materials Science: Materials in Electronics, 2006, 17, 443-451.	1.1	37
110	Characterization of annealing effect on the surface, interface and bulk of AlN grown on SiC. International Journal of Refractory Metals and Hard Materials, 2006, 24, 55-60.	1.7	1
111	Synthesis of polycrystalline diamond at low temperature on temperature sensitive materials of industrial interest. International Journal of Refractory Metals and Hard Materials, 2006, 24, 24-31.	1.7	6
112	Effects of a nanocomposite carbon buffer layer on the field emission properties of multiwall carbon nanotubes and nanofibers grown by hot filament chemical vapor deposition. Journal of Vacuum Science & Technology B, 2006, 24, 639.	1.3	14
113	Electronic structure of sulfur-modified nanocrystalline carbon films. Journal of Applied Physics, 2005, 97, 094307.	1.1	12
114	Interplay of hydrogen and deposition temperature in optical properties of hot-wire deposited a‧i:H Films:Ex situspectroscopic ellipsometry studies. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 2005, 23, 1668-1675.	0.9	7
115	Numerical study of the electrostatic field gradients present in various planar emitter field emission configurations relevant to experimental research. Journal of Vacuum Science & Technology an Official Journal of the American Vacuum Society B, Microelectronics Processing and Phenomena, 2005, 23, 645.	1.6	17
116	Formation of boron carbonitride nanotubes from in situ grown carbon nanotubes. Diamond and Related Materials, 2005, 14, 965-969.	1.8	23
117	Electron field-emission mechanism in nanostructured carbon films: A quest. Journal of Applied Physics, 2004, 95, 8314-8320.	1.1	23
118	Formation of boron carbonitride nanotubes from in situ grown carbon nanotubes for space applications. Materials Research Society Symposia Proceedings, 2004, 851, 151.	0.1	0
119	Effects of heavy-ion radiation on the electron field emission properties of sulfur-doped nanocomposite carbon films. Diamond and Related Materials, 2004, 13, 221-225.	1.8	14
120	Ex situ spectroscopic ellipsometry investigations of chemical vapor deposited nanocomposite carbon thin films. Thin Solid Films, 2004, 455-456, 422-428.	0.8	9
121	Role of H in hot-wire deposited a-Si:H films revisited: optical characterization and modeling. Journal of Non-Crystalline Solids, 2004, 343, 131-142.	1.5	11
122	Ultraviolet and visible Raman spectroscopic investigations of nanocrystalline carbon thin films grown by bias-assisted hot-filament chemical vapor deposition. Journal of Raman Spectroscopy, 2003, 34, 192-198.	1.2	14
123	Spatial distribution of electron emission sites for sulfur doped and intrinsic nanocrystalline diamond films. Diamond and Related Materials, 2003, 12, 474-480.	1.8	25
124	Synthesis and characterization of sulfur-incorporated microcrystalline diamond and nanocrystalline carbon thin films by hot filament chemical vapor deposition. Journal of Materials Research, 2003, 18, 363-381.	1.2	34
125	Influence of sulfur incorporation on field-emission properties of microcrystalline diamond thin films. Journal of Materials Research, 2003, 18, 2708-2716.	1.2	4
126	Room-temperature electrical conductivity studies of sulfur-modified microcrystalline diamond thin films. Applied Physics Letters, 2003, 83, 491-493.	1.5	24

#	Article	IF	CITATIONS
127	Parallel Bias-Enhanced Sulfur-Assisted Chemical Vapor Deposition of Nanocrystalline Diamond Films. Materials Research Society Symposia Proceedings, 2003, 775, 9541.	0.1	0
128	Study of the Effects of Heavy-Ion Radiation on Nanocomposite Carbon Films. Materials Research Society Symposia Proceedings, 2003, 777, 881.	0.1	0
129	Electrical conductivity studies of chemical vapor deposited sulfur-incorporated nanocomposite carbon thin films. Applied Physics Letters, 2002, 81, 283-285.	1.5	17
130	Role of sp2 C cluster size on the field emission properties of sulfur-incorporated nanocomposite carbon thin films. Applied Physics Letters, 2002, 80, 1471-1473.	1.5	30
131	Investigations of the electron field emission properties and microstructure correlation in sulfur-incorporated nanocrystalline carbon thin films. Journal of Applied Physics, 2002, 91, 10088.	1.1	21
132	Electron field emission properties of gamma irradiated microcrystalline diamond and nanocrystalline carbon thin films. Journal of Applied Physics, 2002, 92, 3311-3317.	1.1	27
133	Synthesizing Nanocrystalline Carbon Thin Films by Hot Filament Chemical Vapor Deposition and Controlling Their Microstructure. Journal of Materials Research, 2002, 17, 1820-1833.	1.2	9
134	Ex situspectroscopic ellipsometry and Raman spectroscopy investigations of chemical vapor deposited sulfur incorporated nanocrystalline carbon thin films. Journal of Applied Physics, 2002, 92, 5457-5462.	1.1	36
135	Electron field emission properties of microcrystalline and nanocrystalline carbon thin films deposited by S-assisted hot filament CVD. Diamond and Related Materials, 2002, 11, 799-803.	1.8	24
136	Ex situ spectroscopic ellipsometry investigation of the layered structure of polycrystalline diamond thin films grown by electron cyclotron resonance-assisted chemical vapor deposition. Journal of Applied Physics, 2001, 90, 1280-1285.	1.1	11
137	Spectroscopic ellipsometry studies of nanocrystalline carbon thin films deposited by HFCVD. Diamond and Related Materials, 2001, 10, 1968-1972.	1.8	28
138	Optical Characterization and Modeling of Sulfur Incorporated Nanocrystalline Carbon Thin Films Deposited By Hot Filament CVD. Materials Research Society Symposia Proceedings, 2001, 703, 1.	0.1	0
139	Effects of Sulfur Concentration on the Electron Field Emission Properties of Nanocrystalline Carbon Thin Films. Materials Research Society Symposia Proceedings, 2001, 675, 1.	0.1	1
140	Interference enhanced Raman scattering of hydrogenated amorphous silicon revisited. Journal of Raman Spectroscopy, 2001, 32, 23-25.	1.2	8
141	Study of the effects of low-energy electron bombardment during the chemical vapor deposition of diamond. Journal of Materials Research, 2001, 16, 293-295.	1.2	5
142	Study of the electron field emission and microstructure correlation in nanocrystalline carbon thin films. Journal of Applied Physics, 2001, 89, 5671-5675.	1.1	35
143	Electron field emission from sulfur-incorporated nanocrystalline carbon thin films. Applied Physics Letters, 2001, 79, 3446-3448.	1.5	24
144	Investigation of the Layered Structure of Polycrystalline Diamond Thin Films Grown by ECR-Assisted CVD by Spectroscopic Phase Modulated Ellipsometry. Materials Research Society Symposia Proceedings, 2000, 648, 1.	0.1	0

#	Article	IF	CITATIONS
145	Low-Field Electron Emission Properties from Intrinsic and S-Incorporated Nanocrystalline Carbon Thin Films Grown by Hot- Filament CVD. Materials Research Society Symposia Proceedings, 2000, 638, 1.	0.1	0
146	In situ phase-modulated ellipsometry study of the surface damaging process of silicon under atomic hydrogen. Solid State Communications, 2000, 116, 217-220.	0.9	1
147	Title is missing!. Journal of Materials Science, 2000, 35, 6245-6249.	1.7	2
148	Structural evolution during chemical vapor deposition of diamond thin films. Journal of Applied Physics, 2000, 88, 5716-5719.	1.1	6
149	Microstructural studies of diamond thin films grown by electron cyclotron resonance-assisted chemical vapor deposition. Journal of Applied Physics, 2000, 88, 5695-5702.	1.1	17
150	The effect of hydrogen on the network disorder in hydrogenated amorphous silicon. Applied Physics Letters, 1999, 75, 2803-2805.	1.5	36
151	Luminescence and Raman scattering of thermally reduced CaSZ crystals. Journal of Luminescence, 1999, 83-84, 481-485.	1.5	Ο
152	Study of diamond films grown at low temperatures and pressures by ECR-assisted CVD. Diamond and Related Materials, 1999, 8, 185-188.	1.8	6
153	In situ measurements of methane and acetylene concentrations in a CVD reactor by infrared spectroscopy. Diamond and Related Materials, 1999, 8, 166-170.	1.8	19
154	Controlling the Diamond Film Morphology by Low-Energy Electron Bombardment. Materials Research Society Symposia Proceedings, 1999, 585, 283.	0.1	0
155	In Situ Ellipsometry Study of the Diamond Film Evolution Process. Materials Research Society Symposia Proceedings, 1999, 580, 351.	0.1	0
156	<i>In Situ</i> Spectroscopic Ellipsometry Study of the Oxide Etching and Surface Damaging Processes on Silicon Under Hydrogen Plasma. Materials Research Society Symposia Proceedings, 1999, 591, 276.	0.1	1
157	Effects of Seeding Over the Microstructure and Stresses of Diamond Thin Films. Materials Research Society Symposia Proceedings, 1999, 594, 337.	0.1	1
158	Measurement and analysis of diamond Raman bandwidths. Diamond and Related Materials, 1998, 7, 1029-1032.	1.8	24
159	Characterization of GaAs wire crystals grown on porous silicon by Raman scattering. Journal of Applied Physics, 1997, 82, 6247-6250.	1.1	18
160	Raman scattering study of thermally reduced stabilized cubic zirconia. Journal of Applied Physics, 1997, 81, 2830-2834.	1.1	35
161	Spectroscopic study of CaSZ and YSZ thermochemically reduced crystals. Journal of Luminescence, 1997, 72-74, 724-725.	1.5	9
162	Crystalline phases at the p―to nâ€ŧype transition in Cuâ€ŧernary semiconducting films. Applied Physics Letters, 1996, 69, 987-989.	1.5	67

#	Article	IF	CITATIONS
163	Characterization of the silicon network disorder in hydrogenated amorphous silicon carbide alloys with low carbon concentrations. Journal of Non-Crystalline Solids, 1996, 194, 78-84.	1.5	29
164	Anisotropic photoluminescence characteristics of Al0.08Ga929292As single quantum well laser structure. Journal of Materials Science, 1996, 31, 4793-4799.	1.7	0
165	Anharmonic interactions in beryllium oxide. Physical Review B, 1996, 53, 5388-5395.	1.1	39
166	Correlation Between Phototransport and Network Order in a-Si:H. Materials Research Society Symposia Proceedings, 1995, 377, 479.	0.1	1
167	Raman study of the network disorder in sputtered and glow dischargeaâ€Si:H films. Journal of Applied Physics, 1995, 78, 5120-5125.	1.1	59
168	Raman spectroscopy of oxygenated amorphous CdTe films. Journal of Raman Spectroscopy, 1994, 25, 203-207.	1.2	21
169	Inhomogeneity in the Network Order of Device Quality a-Si:H. Materials Research Society Symposia Proceedings, 1993, 297, 321.	0.1	4
170	Raman spectroscopy of BeO at low temperatures. Journal of Raman Spectroscopy, 1991, 22, 311-314.	1.2	11
171	Temperature-dependent Raman scattering studies in ferroelastic LiCsSO4. Journal of Raman Spectroscopy, 1991, 22, 529-534.	1.2	17
172	Studies of doped nanocrystalline diamond films grown by parallel bias-enhanced CVD. , 0, , .		1
173	Numerical study of the electrostatic field gradients present in various planar emitter field emission configurations relevant to experimental research. , 0, , .		0