
Wanyun Xu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9473141/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Long-term trends of surface ozone and its influencing factors at the Mt Waliguan GAW station, China – Part 1: Overall trends and characteristics. Atmospheric Chemistry and Physics, 2016, 16, 6191-6205.	1.9	104
2	Photochemical Aqueous-Phase Reactions Induce Rapid Daytime Formation of Oxygenated Organic Aerosol on the North China Plain. Environmental Science & Technology, 2020, 54, 3849-3860.	4.6	85
3	Chemical Differences Between PM ₁ and PM _{2.5} in Highly Polluted Environment and Implications in Air Pollution Studies. Geophysical Research Letters, 2020, 47, e2019GL086288.	1.5	72
4	Long-term trends of surface ozone and its influencing factors at the Mt Waliguan GAW station, China – Part 2: The roles of anthropogenic emissions and climate variability. Atmospheric Chemistry and Physics, 2018, 18, 773-798.	1.9	56
5	A novel method for calculating ambient aerosol liquid water content based on measurements of a humidified nephelometer system. Atmospheric Measurement Techniques, 2018, 11, 2967-2982.	1.2	50
6	Characterization of atmospheric trace gases and particulate matter in Hangzhou, China. Atmospheric Chemistry and Physics, 2018, 18, 1705-1728.	1.9	48
7	Long-term changes of regional ozone in China: implications for human health and ecosystem impacts. Elementa, 2020, 8, .	1.1	48
8	Distinct diurnal variation in organic aerosol hygroscopicity and its relationship with oxygenated organic aerosol. Atmospheric Chemistry and Physics, 2020, 20, 865-880.	1.9	46
9	Seasonal variation in surface ozone and its regional characteristics at global atmosphere watch stations in China. Journal of Environmental Sciences, 2019, 77, 291-302.	3.2	41
10	NH ₃ -promoted hydrolysis of NO ₂ induces explosive growth in HONO. Atmospheric Chemistry and Physics, 2019, 19, 10557-10570.	1.9	38
11	Current Challenges in Visibility Improvement in Southern China. Environmental Science and Technology Letters, 2020, 7, 395-401.	3.9	38
12	Dust-Dominated Coarse Particles as a Medium for Rapid Secondary Organic and Inorganic Aerosol Formation in Highly Polluted Air. Environmental Science & Technology, 2020, 54, 15710-15721.	4.6	37
13	Light absorption of black carbon and brown carbon in winter in North China Plain: comparisons between urban and rural sites. Science of the Total Environment, 2021, 770, 144821.	3.9	33
14	First simultaneous measurements of peroxyacetyl nitrate (PAN) and ozone at Nam Co in the central Tibetan Plateau: impacts from the PBL evolution and transport processes. Atmospheric Chemistry and Physics, 2018, 18, 5199-5217.	1.9	32
15	Exploring the inconsistent variations in atmospheric primary and secondary pollutants during the 2016 G20 summit in Hangzhou, China: implications from observations and models. Atmospheric Chemistry and Physics, 2020, 20, 5391-5403.	1.9	31
16	Chemical characteristics of PM 2.5 during summer at a background site of the Yangtze River Delta in China. Atmospheric Research, 2017, 198, 163-172.	1.8	29
17	A Review on Laboratory Studies and Field Measurements of Atmospheric Organic Aerosol Hygroscopicity and Its Parameterization Based on Oxidation Levels. Current Pollution Reports, 2020, 6, 410-424.	3.1	29
18	A novel method for distinguishing fog and haze based on PM2.5, visibility, and relative humidity. Science China Earth Sciences, 2014, 57, 2156-2164.	2.3	28

Wanyun Xu

#	Article	IF	CITATIONS
19	Variability of SO2 in an intensive fog in North China Plain: Evidence of high solubility of SO2. Particuology, 2013, 11, 41-47.	2.0	27
20	Biomass burning impacts on ambient aerosol at a background site in East China: Insights from a yearlong study. Atmospheric Research, 2020, 231, 104660.	1.8	27
21	Explosive morning growth phenomena of NH3 on the North China Plain: Causes and potential impacts on aerosol formation. Environmental Pollution, 2020, 257, 113621.	3.7	27
22	A parameterization for the light scattering enhancement factor with aerosol chemical compositions. Atmospheric Environment, 2018, 191, 370-377.	1.9	25
23	Measurements of higher alkanes using NO ⁺ chemical ionization in PTR-ToF-MS: important contributions of higher alkanes to secondary organic aerosols in China. Atmospheric Chemistry and Physics, 2020, 20, 14123-14138.	1.9	24
24	Multiphase chemistry experiment in Fogs and Aerosols in the North China Plain (McFAN): integrated analysis and intensive winter campaign 2018. Faraday Discussions, 2021, 226, 207-222.	1.6	23
25	Organic aerosol volatility and viscosity in the North China Plain: contrast between summer and winter. Atmospheric Chemistry and Physics, 2021, 21, 5463-5476.	1.9	22
26	Development and validation of a CCD-laser aerosol detective system for measuring the ambient aerosol phase function. Atmospheric Measurement Techniques, 2017, 10, 2313-2322.	1.2	21
27	Changes in ammonia and its effects on PM2.5 chemical property in three winter seasons in Beijing, China. Science of the Total Environment, 2020, 749, 142208.	3.9	21
28	High Concentrations of Atmospheric Isocyanic Acid (HNCO) Produced from Secondary Sources in China. Environmental Science & Technology, 2020, 54, 11818-11826.	4.6	20
29	Aerosol Promotes Peroxyacetyl Nitrate Formation During Winter in the North China Plain. Environmental Science & Technology, 2021, 55, 3568-3581.	4.6	20
30	Chlorofluorocarbons, hydrochlorofluorocarbons, and hydrofluorocarbons in the atmosphere of four Chinese cities. Atmospheric Environment, 2013, 75, 83-91.	1.9	19
31	Characteristics and source implications of aromatic hydrocarbons at urban and background areas in Beijing, China. Science of the Total Environment, 2020, 707, 136083.	3.9	18
32	Simultaneous observation of atmospheric peroxyacetyl nitrate and ozone in the megacity of Shanghai, China: Regional transport and thermal decomposition. Environmental Pollution, 2021, 274, 116570.	3.7	18
33	Measurement report: Chemical characteristics of PM _{2.5} during typical biomass burning season at an agricultural site of the North China Plain. Atmospheric Chemistry and Physics, 2021, 21, 3181-3192.	1.9	17
34	Efficient Conversion of NO to NO ₂ on SO ₂ -Aged MgO under Atmospheric Conditions. Environmental Science & Technology, 2020, 54, 11848-11856.	4.6	15
35	The abundance and inter-relationship of atmospheric peroxyacetyl nitrate (PAN), peroxypropionyl nitrate (PPN), O3, and NOy during the wintertime in Beijing, China. Science of the Total Environment, 2020, 718, 137388.	3.9	15
36	Method to retrieve the nocturnal aerosol optical depth with a CCD laser aerosol detective system. Optics Letters, 2017, 42, 4607.	1.7	14

Wanyun Xu

#	Article	IF	CITATIONS
37	A novel method to retrieve the nocturnal boundary layer structure based on CCD laser aerosol detection system measurements. Remote Sensing of Environment, 2018, 211, 38-47.	4.6	14
38	Influence of High Relative Humidity on Secondary Organic Carbon: Observations at a Background Site in East China. Journal of Meteorological Research, 2019, 33, 905-913.	0.9	13
39	Estimation of particulate organic nitrates from thermodenuder–aerosol mass spectrometer measurements in the North China Plain. Atmospheric Measurement Techniques, 2021, 14, 3693-3705.	1.2	12
40	Secondary aerosol formation alters CCN activity in the North China Plain. Atmospheric Chemistry and Physics, 2021, 21, 7409-7427.	1.9	11
41	On the fossil and non-fossil fuel sources of carbonaceous aerosol with radiocarbon and AMS-PMF methods during winter hazy days in a rural area of North China plain. Environmental Research, 2022, 208, 112672.	3.7	11
42	Calculating ambient aerosol surface area concentrations using aerosol light scattering enhancement measurements. Atmospheric Environment, 2019, 216, 116919.	1.9	10
43	Volatile organic compounds in wintertime North China Plain: Insights from measurements of proton transfer reaction time-of-flight mass spectrometer (PTR-ToF-MS). Journal of Environmental Sciences, 2022, 114, 98-114.	3.2	10
44	The chemical composition and mixing state of BC-containing particles and the implications on light absorption enhancement. Atmospheric Chemistry and Physics, 2022, 22, 7619-7630.	1.9	10
45	Strong light scattering of highly oxygenated organic aerosols impacts significantly on visibility degradation. Atmospheric Chemistry and Physics, 2022, 22, 7713-7726.	1.9	10
46	Predicting cloud condensation nuclei number concentration based on conventional measurements of aerosol properties in the North China Plain. Science of the Total Environment, 2020, 719, 137473.	3.9	9
47	A new method for calculating number concentrations of cloud condensation nuclei based on measurements of a three-wavelength humidified nephelometer system. Atmospheric Measurement Techniques, 2018, 11, 895-906.	1.2	8
48	Size-resolved characterization of organic aerosol in the North China Plain: new insights from high resolution spectral analysis. Environmental Science Atmospheres, 2021, 1, 346-358.	0.9	8
49	Understanding the formation of high-ozone episodes at Raoyang, a rural site in the north China plain. Atmospheric Environment, 2020, 240, 117797.	1.9	7
50	A modeling study of the regional representativeness of surface ozone variation at the WMO/GAW background stations in China. Atmospheric Environment, 2020, 242, 117672.	1.9	6
51	Joint increase of aerosol scattering efficiency and aerosol hygroscopicity aggravate visibility impairment in the North China Plain. Science of the Total Environment, 2022, 839, 156279.	3.9	6
52	Wet Inorganic Nitrogen Deposition at the Daheitin Reservoir in North China: Temporal Variation, Sources, and Biomass Burning Influences. Atmosphere, 2020, 11, 1260.	1.0	5
53	Measurement report: On the difference in aerosol hygroscopicity between high and low relative humidity conditions in the North China Plain. Atmospheric Chemistry and Physics, 2022, 22, 4599-4613.	1.9	5
54	Particle number size distribution of PM1 and PM10 in fogs and implications on fog droplet evolutions. Atmospheric Environment, 2022, 277, 119086.	1.9	4

#	Article	IF	CITATIONS
55	Observational insights into the compound environmental effect for 2-methyltetrols formation under humid ambient conditions. Chemosphere, 2022, 289, 133153.	4.2	3
56	Primary Emissions and Secondary Aerosol Processing During Wintertime in Rural Area of North China Plain. Journal of Geophysical Research D: Atmospheres, 2022, 127, .	1.2	3