Serena Leone

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9473093/publications.pdf Version: 2024-02-01

SEDENA LEONE

#	Article	IF	CITATIONS
1	First identification and characterization of detoxifying plastic-degrading DBP hydrolases in the marine diatom Cylindrotheca closterium. Science of the Total Environment, 2022, 812, 152535.	3.9	6
2	A Survey on the Distribution of Ovothiol and ovoA Gene Expression in Different Tissues and Cells: A Comparative Analysis in Sea Urchins and Mussels. Marine Drugs, 2022, 20, 268.	2.2	4
3	Production and characterization of a fusion form of hepatitis E virus <i>t</i> ORF2 capsid protein in <i>Escherichia coli</i> . Preparative Biochemistry and Biotechnology, 2021, 51, 562-569.	1.0	3
4	A Super Stable Mutant of the Plant Protein Monellin Endowed with Enhanced Sweetness. Life, 2021, 11, 236.	1.1	9
5	Milk Exosomes Transfer Oligosaccharides into Macrophages to Modulate Immunity and Attenuate Adherent-Invasive E. coli (AIEC) Infection. Nutrients, 2021, 13, 3198.	1.7	18
6	Probing structural changes during amyloid aggregation of the sweet protein MNEI. FEBS Journal, 2020, 287, 2808-2822.	2.2	5
7	Solution structure of insect CSP and OBPs by NMR. Methods in Enzymology, 2020, 642, 169-192.	0.4	0
8	Understanding the self-assembly pathways of a single chain variant of monellin: A first step towards the design of sweet nanomaterials. International Journal of Biological Macromolecules, 2020, 152, 21-29.	3.6	3
9	Structural effects of methylglyoxal glycation, a study on the model protein MNEI. Molecular and Cellular Biochemistry, 2019, 451, 165-171.	1.4	8
10	Insights into the G-rich VEGF-binding aptamer V7t1: when two G-quadruplexes are better than one!. Nucleic Acids Research, 2019, 47, 8318-8331.	6.5	32
11	Temporal sweetness profile of the emerging sweetener MNEI in stirred yogurt. Journal of Sensory Studies, 2019, 34, e12505.	0.8	4
12	Structure, stability and aggregation propensity of a Ribonuclease A-Onconase chimera. International Journal of Biological Macromolecules, 2019, 133, 1125-1133.	3.6	5
13	Metabolic Effects of the Sweet Protein MNEI as a Sweetener in Drinking Water. A Pilot Study of a High Fat Dietary Regimen in a Rodent Model. Nutrients, 2019, 11, 2643.	1.7	4
14	pH driven fibrillar aggregation of the super-sweet protein Y65R-MNEI: A step-by-step structural analysis. Biochimica Et Biophysica Acta - General Subjects, 2018, 1862, 808-815.	1.1	13
15	Structural organization of lipid-functionalized-Au nanoparticles. Colloids and Surfaces B: Biointerfaces, 2018, 168, 2-9.	2.5	21
16	Disordered Peptides Looking for Their Native Environment: Structural Basis of CB1 Endocannabinoid Receptor Binding to Pepcans. Frontiers in Molecular Biosciences, 2018, 5, 100.	1.6	11
17	High-level production of single chain monellin mutants with enhanced sweetness and stability in tobacco chloroplasts. Planta, 2018, 248, 465-476.	1.6	5
18	Salt Modulated Fibrillar Aggregation of the Sweet Protein MNEI in Aqueous Solution. Journal of Solution Chemistry, 2018, 47, 939-949.	0.6	6

SERENA LEONE

#	Article	IF	CITATIONS
19	Getting value from the waste: recombinant production of a sweet protein by Lactococcus lactis grown on cheese whey. Microbial Cell Factories, 2018, 17, 126.	1.9	16
20	Sweeter and Stronger: Structural-Driven Molecular Design to Enhance Sweetness and Stability of the Single Chain Monellin MNEI. Biophysical Journal, 2017, 112, 53a.	0.2	0
21	Rheological and sensory performance of a protein-based sweetener (MNEI), sucrose, and aspartame in yogurt. Journal of Dairy Science, 2017, 100, 9539-9550.	1.4	22
22	Influence of <scp>pH</scp> on the structure and stability of the sweet protein MNEI. FEBS Letters, 2016, 590, 3681-3689.	1.3	19
23	Sweeter and stronger: enhancing sweetness and stability of the single chain monellin MNEI through molecular design. Scientific Reports, 2016, 6, 34045.	1.6	38
24	NMR Spectroscopic Assignment of Backbone and Sideâ€Chain Protons in Fully Protonated Proteins: Microcrystals, Sedimented Assemblies, and Amyloid Fibrils. Angewandte Chemie - International Edition, 2016, 55, 15504-15509.	7.2	116
25	Zuordnung der Rückgrat―und Seitenkettenâ€Protonen in vollstädig protonierten Proteinen durch Festkörperâ€NMRâ€Spektroskopie: Mikrokristalle, Sedimente und Amyloidfibrillen. Angewandte Chemie, 2016, 128, 15730-15735.	1.6	18
26	The human milk oligosaccharide 2′-fucosyllactose modulates CD14 expression in human enterocytes, thereby attenuating LPS-induced inflammation. Gut, 2016, 65, 33-46.	6.1	217
27	Human Milk Oligosaccharides and Synthetic Galactosyloligosaccharides Contain 3′-, 4-, and 6′-Galactosyllactose and Attenuate Inflammation in Human T84, NCM-460, and H4 Cells and Intestinal Tissue Ex Vivo. Journal of Nutrition, 2016, 146, 358-367.	1.3	74
28	Molecular Dynamics Driven Design of pH-Stabilized Mutants of MNEI, a Sweet Protein. PLoS ONE, 2016, 11, e0158372.	1.1	28
29	Acetate: friend or foe? Efficient production of a sweet protein in Escherichia coli BL21 using acetate as a carbon source. Microbial Cell Factories, 2015, 14, 106.	1.9	59
30	Design of sweet protein based sweeteners: Hints from structure–function relationships. Food Chemistry, 2015, 173, 1179-1186.	4.2	40
31	Human milk oligosaccharides and galactosyloligosaccharides attenuate inflammation in human intestine. FASEB Journal, 2015, 29, 252.1.	0.2	1
32	Human colostrum oligosaccharides modulate major immunologic pathways of immature human intestine. Mucosal Immunology, 2014, 7, 1326-1339.	2.7	108
33	The structural elucidation of the Salmonella enterica subsp. enterica, reveals that it contains both O-factors 4 and 5 on the LPS antigen. Carbohydrate Research, 2013, 370, 9-12.	1.1	11
34	The structure of the O-specific polysaccharide from the lipopolysaccharide of Pseudomonas sp. OX1 cultivated in the presence of the azo dye Orange II. Carbohydrate Research, 2008, 343, 674-684.	1.1	10
35	Detailed characterization of the lipid A fraction from the nonpathogen Acinetobacter radioresistens strain S13. Journal of Lipid Research, 2007, 48, 1045-1051.	2.0	25
36	Absolute Configuration of 8-Amino-3,8-dideoxyoct-2-ulosonic Acid, the Chemical Hallmark of Lipopolysaccharides of the GenusShewanella§. Journal of Natural Products, 2007, 70, 1624-1627.	1.5	9

SERENA LEONE

#	Article	IF	CITATIONS
37	Molecular Structure of Endotoxins from Gram-negative Marine Bacteria: An Update. Marine Drugs, 2007, 5, 85-112.	2.2	58
38	The Outer Membrane of the Marine Gram-Negative BacteriumAlteromonas addita is Composed of a Very Short-Chain Lipopolysaccharide with a High Negative Charge Density. European Journal of Organic Chemistry, 2007, 2007, 1113-1122.	1.2	12
39	Structure of the Ironâ€Binding Exopolysaccharide Produced Anaerobically by the Gramâ€Negative Bacterium <i>Klebsiella oxytoca</i> BASâ€10. European Journal of Organic Chemistry, 2007, 2007, 5183-5189.	1.2	29
40	The O-specific polysaccharide structure from the lipopolysaccharide of the Gram-negative bacterium Raoultella terrigena. Carbohydrate Research, 2007, 342, 1514-1518.	1.1	16
41	Molecular Structure of Endotoxins from Gram-negative Marine Bacteria: An Update. Marine Drugs, 2007, 5, 85-112.	2.2	3
42	Structural elucidation of the core-lipid A backbone from the lipopolysaccharide of Acinetobacter radioresistens S13, an organic solvent tolerant Gram-negative bacterium. Carbohydrate Research, 2006, 341, 582-590.	1.1	20
43	The biofilm matrix of Pseudomonas sp. OX1 grown on phenol is mainly constituted by alginate oligosaccharides. Carbohydrate Research, 2006, 341, 2456-2461.	1.1	17
44	The structures of the cell wall teichoic acids from the thermophilic microorganism Geobacillus thermoleovorans strain Fango. Carbohydrate Research, 2006, 341, 2613-2618.	1.1	3
45	The O-chain structure from the LPS of the endophytic bacterium Burkholderia cepacia strain ASP B 2D. Carbohydrate Research, 2006, 341, 2954-2958.	1.1	15
46	The structures of glycolipids isolated from the highly thermophilic bacterium Thermus thermophilus Samu-SA1. Glycobiology, 2006, 16, 766-775.	1.3	35
47	Complete Structural Elucidation of a Novel Lipooligosaccharide from the Outer Membrane of the Marine BacteriumShewanella pacifica. European Journal of Organic Chemistry, 2005, 2005, 2281-2291.	1.2	20
48	The structure of the O-polysaccharide from Pseudomonas stutzeri OX1 containing two different 4-acylamido-4,6-dideoxy-residues, tomosamine and perosamine. Carbohydrate Research, 2005, 340, 651-656.	1.1	13
49	A novel type of highly negatively charged lipooligosaccharide from Pseudomonas stutzeri OX1 possessing two 4,6-O-(1-carboxy)-ethylidene residues in the outer core region. FEBS Journal, 2004, 271, 2691-2704.	0.2	26
50	The complete structure of the lipooligosaccharide from the halophilic bacterium Pseudoalteromonas issachenkonii KMM 3549T. Carbohydrate Research, 2004, 339, 1985-1993.	1.1	21
51	The structure of the phosphorylated carbohydrate backbone of the lipopolysaccharide of the phytopathogen bacterium Pseudomonas tolaasii. Carbohydrate Research, 2004, 339, 2241-2248.	1.1	15
52	Structure of minor oligosaccharides from the lipopolysaccharide fraction from Pseudomonas stutzeri OX1. Carbohydrate Research, 2004, 339, 2657-2665.	1.1	7