List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9472894/publications.pdf

Version: 2024-02-01

		8159	9311
151	39,612	76	143
papers	citations	h-index	g-index
162	162	162	39386
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Tensional homeostasis and the malignant phenotype. Cancer Cell, 2005, 8, 241-254.	7.7	3,397
2	Matrix Crosslinking Forces Tumor Progression by Enhancing Integrin Signaling. Cell, 2009, 139, 891-906.	13.5	3,319
3	The extracellular matrix at a glance. Journal of Cell Science, 2010, 123, 4195-4200.	1.2	3,130
4	The extracellular matrix: A dynamic niche in cancer progression. Journal of Cell Biology, 2012, 196, 395-406.	2.3	2,547
5	Depletion of Carcinoma-Associated Fibroblasts and Fibrosis Induces Immunosuppression and Accelerates Pancreas Cancer with Reduced Survival. Cancer Cell, 2014, 25, 719-734.	7.7	1,892
6	A tense situation: forcing tumour progression. Nature Reviews Cancer, 2009, 9, 108-122.	12.8	1,636
7	Extracellular Matrix Degradation and Remodeling in Development and Disease. Cold Spring Harbor Perspectives in Biology, 2011, 3, a005058-a005058.	2.3	1,597
8	Reversion of the Malignant Phenotype of Human Breast Cells in Three-Dimensional Culture and In Vivo by Integrin Blocking Antibodies. Journal of Cell Biology, 1997, 137, 231-245.	2.3	1,503
9	The extracellular matrix modulates the hallmarks of cancer. EMBO Reports, 2014, 15, 1243-1253.	2.0	1,391
10	Extracellular matrix assembly: a multiscale deconstruction. Nature Reviews Molecular Cell Biology, 2014, 15, 771-785.	16.1	1,061
11	\hat{l}^24 integrin-dependent formation of polarized three-dimensional architecture confers resistance to apoptosis in normal and malignant mammary epithelium. Cancer Cell, 2002, 2, 205-216.	7.7	880
12	Balancing forces: architectural control of mechanotransduction. Nature Reviews Molecular Cell Biology, 2011, 12, 308-319.	16.1	817
13	Mechanics, malignancy, and metastasis: The force journey of a tumor cell. Cancer and Metastasis Reviews, 2009, 28, 113-127.	2.7	791
14	Reciprocal interactions between Â1-integrin and epidermal growth factor receptor in three-dimensional basement membrane breast cultures: A different perspective in epithelial biology. Proceedings of the National Academy of Sciences of the United States of America, 1998, 95, 14821-14826.	3.3	762
15	Dynamic interplay between the collagen scaffold and tumor evolution. Current Opinion in Cell Biology, 2010, 22, 697-706.	2.6	725
16	The cancer glycocalyx mechanically primes integrin-mediated growth and survival. Nature, 2014, 511, 319-325.	13.7	610
17	The organizing principle: microenvironmental influences in the normal and malignant breast. Differentiation, 2002, 70, 537-546.	1.0	542
18	Actomyosin-Mediated Cellular Tension Drives Increased Tissue Stiffness and \hat{I}^2 -Catenin Activation to Induce Epidermal Hyperplasia and Tumor Growth. Cancer Cell, 2011, 19, 776-791.	7.7	477

#	Article	IF	Citations
19	Genotype tunes pancreatic ductal adenocarcinoma tissue tension to induce matricellular fibrosis and tumor progression. Nature Medicine, 2016, 22, 497-505.	15.2	456
20	The Tension Mounts: Mechanics Meets Morphogenesis and Malignancy. Journal of Mammary Gland Biology and Neoplasia, 2004, 9, 325-342.	1.0	410
21	Tissue mechanics modulate microRNA-dependent PTEN expression to regulate malignant progression. Nature Medicine, 2014, 20, 360-367.	15.2	353
22	The Extracellular Matrix Modulates the Metastatic Journey. Developmental Cell, 2019, 49, 332-346.	3.1	335
23	Fibrosis and cancer: A strained relationship. Biochimica Et Biophysica Acta: Reviews on Cancer, 2020, 1873, 188356.	3.3	327
24	Feeling Stress: The Mechanics of Cancer Progression and Aggression. Frontiers in Cell and Developmental Biology, 2018, 6, 17.	1.8	288
25	Three-dimensional context regulation of metastasis. Clinical and Experimental Metastasis, 2009, 26, 35-49.	1.7	285
26	Forcing form and function: biomechanical regulation of tumor evolution. Trends in Cell Biology, 2011, 21, 47-56.	3.6	270
27	Tissue mechanics promote IDH1-dependent HIF1α–tenascin C feedback to regulate glioblastomaÂaggression. Nature Cell Biology, 2016, 18, 1336-1345.	4.6	259
28	Mammary epithelial cell: Influence of extracellular matrix composition and organization during development and tumorigenesis. International Journal of Biochemistry and Cell Biology, 2007, 39, 1987-1994.	1.2	254
29	Tissue mechanics regulate brain development, homeostasis and disease. Journal of Cell Science, 2017, 130, 71-82.	1.2	243
30	<i>In situ</i> force mapping of mammary gland transformation. Integrative Biology (United Kingdom), 2011, 3, 910-921.	0.6	242
31	Visualizing dynamic microvillar search and stabilization during ligand detection by T cells. Science, 2017, 356, .	6.0	225
32	Tissue phenotype depends on reciprocal interactions between the extracellular matrix and the structural organization of the nucleus. Proceedings of the National Academy of Sciences of the United States of America, 1998, 95, 14711-14716.	3.3	221
33	MT1-MMP-Dependent Control of Skeletal Stem Cell Commitment via a \hat{l}^2 1-Integrin/YAP/TAZ Signaling Axis. Developmental Cell, 2013, 25, 402-416.	3.1	219
34	Integrin Clustering Is Driven by Mechanical Resistance from the Glycocalyx and the Substrate. PLoS Computational Biology, 2009, 5, e1000604.	1.5	217
35	The importance of the microenvironment in breast cancer progression: recapitulation of mammary tumorigenesis using a unique human mammary epithelial cell model and a three-dimensional culture assay. Biochemistry and Cell Biology, 1996, 74, 833-851.	0.9	203
36	Force Matters: Biomechanical Regulation of Cell Invasion and Migration in Disease. Trends in Cell Biology, 2016, 26, 486-497.	3.6	195

#	Article	IF	CITATIONS
37	Tissue Force Programs Cell Fate and Tumor Aggression. Cancer Discovery, 2017, 7, 1224-1237.	7.7	181
38	The Physical and Biochemical Properties of the Extracellular Matrix Regulate Cell Fate. Current Topics in Developmental Biology, 2018, 130, 1-37.	1.0	179
39	Autocrine laminin-5 ligates $\hat{l}\pm6\hat{l}^24$ integrin and activates RAC and NF \hat{l}^eB to mediate anchorage-independent survival of mammary tumors. Journal of Cell Biology, 2003, 163, 1397-1407.	2.3	174
40	Multiscale Modeling of Form and Function. Science, 2009, 324, 208-212.	6.0	172
41	Endonuclease Activities Associated with High Molecular Weight and Internucleosomal DNA Fragmentation in Apoptosis. Experimental Cell Research, 1994, 213, 100-106.	1.2	171
42	Force Engages Vinculin and Promotes Tumor Progression by Enhancing PI3K Activation of Phosphatidylinositol (3,4,5)-Triphosphate. Cancer Research, 2014, 74, 4597-4611.	0.4	168
43	Stromally Derived Lysyl Oxidase Promotes Metastasis of Transforming Growth Factor-β–Deficient Mouse Mammary Carcinomas. Cancer Research, 2013, 73, 5336-5346.	0.4	164
44	Targeting the cancer-associated fibroblasts as a treatment in triple-negative breast cancer. Oncotarget, 2016, 7, 82889-82901.	0.8	155
45	Death in the third dimension: apoptosis regulation and tissue architecture. Current Opinion in Genetics and Development, 2004, 14, 71-80.	1.5	149
46	Tumor microenvironment and progression. Journal of Surgical Oncology, 2011, 103, 468-474.	0.8	149
47	A physical sciences network characterization of non-tumorigenic and metastatic cells. Scientific Reports, 2013, 3, 1449.	1.6	146
48	A Human Breast Cell Model of Preinvasive to Invasive Transition. Cancer Research, 2008, 68, 1378-1387.	0.4	145
49	Tissue Mechanics Orchestrate Wnt-Dependent Human Embryonic Stem Cell Differentiation. Cell Stem Cell, 2016, 19, 462-475.	5.2	142
50	Rapid disorganization of mechanically interacting systems of mammary acini. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 658-663.	3.3	139
51	Physical and Chemical Gradients in the Tumor Microenvironment Regulate Tumor Cell Invasion, Migration, and Metastasis. Cold Spring Harbor Symposia on Quantitative Biology, 2016, 81, 189-205.	2.0	136
52	Metronomic chemotherapy prevents therapy-induced stromal activation and induction of tumor-initiating cells. Journal of Experimental Medicine, 2016, 213, 2967-2988.	4.2	135
53	Biomechanical regulation of cell orientation and fate. Oncogene, 2008, 27, 6981-6993.	2.6	134
54	Physiological ranges of matrix rigidity modulate primary mouse hepatocyte function in part through hepatocyte nuclear factor 4 alpha. Hepatology, 2016, 64, 261-275.	3.6	133

#	Article	IF	CITATIONS
55	$\hat{l}\pm 6\hat{l}^24$ integrin regulates keratinocyte chemotaxis through differential GTPase activation and antagonism of $\hat{l}\pm 3\hat{l}^21$ integrin. Journal of Cell Science, 2003, 116, 3543-3556.	1.2	126
56	Microenvironment rigidity modulates responses to the HER2 receptor tyrosine kinase inhibitor lapatinib via YAP and TAZ transcription factors. Molecular Biology of the Cell, 2015, 26, 3946-3953.	0.9	126
57	Tumour-associated macrophages drive stromal cell-dependent collagen crosslinking and stiffening to promote breast cancer aggression. Nature Materials, 2021, 20, 548-559.	13.3	125
58	Hypoxia-inducible Factor Regulates $\hat{l}\pm v\hat{l}^2$ 3 Integrin Cell Surface Expression. Molecular Biology of the Cell, 2005, 16, 1901-1912.	0.9	124
59	From transformation to metastasis: deconstructing the extracellular matrix in breast cancer. Cancer and Metastasis Reviews, 2016, 35, 655-667.	2.7	123
60	The development of a functionally relevant cell culture model of progressive human breast cancer. Seminars in Cancer Biology, 1995, 6, 175-184.	4.3	119
61	Role of proteolysis in apoptosis: involvement of serine proteases in internucleosomal DNA fragmentation in immature thymocytes. Biochemistry and Cell Biology, 1993, 71, 488-500.	0.9	118
62	Mechanical Control of Epithelial-to-Mesenchymal Transitions in Development and Cancer. Annual Review of Cell and Developmental Biology, 2016, 32, 527-554.	4.0	118
63	Lysyl Oxidase–like Protein LOXL2 Promotes Lung Metastasis of Breast Cancer. Cancer Research, 2017, 77, 5846-5859.	0.4	117
64	Modeling Morphogenesis and Oncogenesis in Three-Dimensional Breast Epithelial Cultures. Annual Review of Pathology: Mechanisms of Disease, 2008, 3, 313-339.	9.6	113
65	Integrin-mediated traction force enhances paxillin molecular associations and adhesion dynamics that increase the invasiveness of tumor cells into a three-dimensional extracellular matrix. Molecular Biology of the Cell, 2017, 28, 1467-1488.	0.9	110
66	Filamin A–β1 Integrin Complex Tunes Epithelial Cell Response to Matrix Tension. Molecular Biology of the Cell, 2009, 20, 3224-3238.	0.9	103
67	A tension-mediated glycocalyx–integrin feedback loop promotes mesenchymal-like glioblastoma. Nature Cell Biology, 2018, 20, 1203-1214.	4.6	103
68	Scanning angle interference microscopy reveals cell dynamics at the nanoscale. Nature Methods, 2012, 9, 825-827.	9.0	102
69	Extracellular Matrix Remodeling and Stiffening Modulate Tumor Phenotype and Treatment Response. Annual Review of Cancer Biology, 2017, 1, 313-334.	2.3	101
70	HOXA9 regulates BRCA1 expression to modulate human breast tumor phenotype. Journal of Clinical Investigation, 2010, 120, 1535-1550.	3.9	98
71	Tumor mechanics and metabolic dysfunction. Free Radical Biology and Medicine, 2015, 79, 269-280.	1.3	95
72	Collagen architecture in pregnancy-induced protection from breast cancer. Journal of Cell Science, 2013, 126, 4108-10.	1,2	87

#	Article	IF	Citations
73	Mechanical Tension Promotes Formation of Gastrulation-like Nodes and Patterns Mesoderm Specification in Human Embryonic Stem Cells. Developmental Cell, 2020, 55, 679-694.e11.	3.1	84
74	A 3D tension bioreactor platform to study the interplay between ECM stiffness and tumor phenotype. Journal of Biotechnology, 2015, 193, 66-69.	1.9	83
75	Structural cues from the tissue microenvironment are essential determinants of the human mammary epithelial cell phenotype. Journal of Mammary Gland Biology and Neoplasia, 1998, 3, 201-213.	1.0	82
76	Effect of substrate stiffness and PDGF on the behavior of vascular smooth muscle cells: Implications for atherosclerosis. Journal of Cellular Physiology, 2010, 225, 115-122.	2.0	82
77	Pancreatic ductal adenocarcinoma progression is restrained by stromal matrix. Journal of Clinical Investigation, 2020, 130, 4704-4709.	3.9	80
78	$\hat{l}\pm\hat{0}\hat{l}^24$ integrin activates Rac-dependent p21-activated kinase 1 to drive NF- \hat{l}^2 B-dependent resistance to apoptosis in 3D mammary acini. Journal of Cell Science, 2007, 120, 3700-3712.	1,2	75
79	Rac-GAP-dependent Inhibition of Breast Cancer Cell Proliferation by Î ² 2-Chimerin. Journal of Biological Chemistry, 2005, 280, 24363-24370.	1.6	74
80	Stiff stroma increases breast cancer risk by inducing the oncogene ZNF217. Journal of Clinical Investigation, 2020, 130, 5721-5737.	3.9	73
81	Demystifying the Effects of a Threeâ€Dimensional Microenvironment in Tissue Morphogenesis. Methods in Cell Biology, 2007, 83, 547-583.	0.5	72
82	Watch thy neighbor: cancer is a communal affair. Journal of Cell Science, 2004, 117, 1287-1290.	1.2	71
83	A bulky glycocalyx fosters metastasis formation by promoting G1 cell cycle progression. ELife, 2017, 6, .	2.8	71
84	Targeting acid ceramidase inhibits YAP/TAZ signaling to reduce fibrosis in mice. Science Translational Medicine, 2020, 12, .	5. 8	71
85	Tissue mechanics in stem cell fate, development, and cancer. Developmental Cell, 2021, 56, 1833-1847.	3.1	71
86	STAT3 Blockade Inhibits Radiation-Induced Malignant Progression in Glioma. Cancer Research, 2015, 75, 4302-4311.	0.4	70
87	Functional culture models to study mechanisms governing apoptosis in normal and malignant mammary epithelial cells. Journal of Mammary Gland Biology and Neoplasia, 1999, 4, 193-201.	1.0	69
88	Force-dependent breaching of the basement membrane. Matrix Biology, 2017, 57-58, 178-189.	1.5	66
89	Adhesion-mediated mechanosignaling forces mitohormesis. Cell Metabolism, 2021, 33, 1322-1341.e13.	7.2	65
90	The ultrastructure of MCF-10A acini. Journal of Cellular Physiology, 2006, 208, 141-148.	2.0	63

#	Article	IF	CITATIONS
91	Tissue mechanics, an important regulator of development and disease. Philosophical Transactions of the Royal Society B: Biological Sciences, 2019, 374, 20180215.	1.8	61
92	Deconstructing Signaling in Three Dimensions. Biochemistry, 2014, 53, 2078-2090.	1.2	60
93	Rac-dependent cyclin D1 gene expression regulated by cadherin- and integrin-mediated adhesion. Journal of Cell Science, 2008, 121, 226-233.	1.2	56
94	Tumour-stromal interactions. Integrins and cell adhesions as modulators of mammary cell survival and transformation. Breast Cancer Research, 2001, 3, 224.	2.2	55
95	Don't sugarcoat it: How glycocalyx composition influences cancer progression. Journal of Cell Biology, 2020, 219, .	2.3	55
96	Discoidin domain receptor 1 (DDR1) ablation promotes tissue fibrosis and hypoxia to induce aggressive basal-like breast cancers. Genes and Development, 2018, 32, 244-257.	2.7	54
97	Exploring the Link Between Human Embryonic Stem Cell Organization and Fate Using Tension-Calibrated Extracellular Matrix Functionalized Polyacrylamide Gels. Methods in Molecular Biology, 2012, 916, 317-350.	0.4	51
98	Analysis of Protein Expression during Oxidative Stress in Breast Epithelial Cells Using a Stable Isotope Labeled Proteome Internal Standard. Journal of Proteome Research, 2005, 4, 2007-2014.	1.8	50
99	CpG Island Tumor Suppressor Promoter Methylation in Non-BRCA-Associated Early Mammary Carcinogenesis. Cancer Epidemiology Biomarkers and Prevention, 2009, 18, 901-914.	1.1	49
100	Cellular adaptation to biomechanical stress across length scales in tissue homeostasis and disease. Seminars in Cell and Developmental Biology, 2017, 67, 141-152.	2.3	43
101	Development of Aggressive Pancreatic Ductal Adenocarcinomas Depends on Granulocyte Colony Stimulating Factor Secretion in Carcinoma Cells. Cancer Immunology Research, 2017, 5, 718-729.	1.6	41
102	Loss of $\langle i \rangle$ miR-203 $\langle i \rangle$ regulates cell shape and matrix adhesion through ROBO1/Rac/FAK in response to stiffness. Journal of Cell Biology, 2016, 212, 707-719.	2.3	38
103	Cell and tissue mechanics: the new cell biology frontier. Molecular Biology of the Cell, 2017, 28, 1815-1818.	0.9	38
104	YAP forces fibroblasts to feel the tension. Nature Cell Biology, 2013, 15, 570-572.	4.6	36
105	SWI/SNF chromatin remodeling enzyme ATPases promote cell proliferation in normal mammary epithelial cells. Journal of Cellular Physiology, 2010, 223, 667-678.	2.0	33
106	Fibronectin rescues estrogen receptor \hat{l}_{\pm} from lysosomal degradation in breast cancer cells. Journal of Cell Biology, 2018, 217, 2777-2798.	2.3	30
107	Extracellular matrix: the central regulator of cell and tissue homeostasis. Trends in Cell Biology, 1997, 7, 40-42.	3.6	28
108	Proteoglycans as Mediators of Cancer Tissue Mechanics. Frontiers in Cell and Developmental Biology, 2020, 8, 569377.	1.8	28

#	Article	IF	Citations
109	Matrix compliance permits NF- \hat{l}^o B activation to drive therapy resistance in breast cancer. Journal of Experimental Medicine, 2021, 218, .	4.2	27
110	Spatiotemporal mosaic self-patterning of pluripotent stem cells using CRISPR interference. ELife, 2018, 7, .	2.8	27
111	Comprehensive characterization of DNA methylation changes in Fuchs endothelial corneal dystrophy. PLoS ONE, 2017, 12, e0175112.	1.1	26
112	Autophagy in stromal fibroblasts promotes tumor desmoplasia and mammary tumorigenesis. Genes and Development, 2021, 35, 963-975.	2.7	25
113	Understanding tissue context influences on intratumour heterogeneity. Nature Cell Biology, 2014, 16, 301-302.	4.6	20
114	EPH/EPHRIN regulates cellular organization by actomyosin contractility effects on cell contacts. Journal of Cell Biology, 2021, 220, .	2.3	20
115	Adaptation to Low Dietary Calcium in Magnesium-Deficient Rats. Journal of Nutrition, 1988, 118, 729-734.	1.3	18
116	Membrane-Associated MMP Regulators. Developmental Cell, 2002, 2, 6-7.	3.1	18
117	Leveraging microenvironmental synthetic lethalities to treat cancer. Journal of Clinical Investigation, 2021, 131, .	3.9	17
118	Antisecretory Factor–Mediated Inhibition of Cell Volume Dynamics Produces Antitumor Activity in Glioblastoma. Molecular Cancer Research, 2018, 16, 777-790.	1.5	16
119	Modeling Tissue Polarity in Context. Journal of Molecular Biology, 2018, 430, 3613-3628.	2.0	16
120	Multicellular Architecture of Malignant Breast Epithelia Influences Mechanics. PLoS ONE, 2014, 9, e101955.	1.1	16
121	The Tissue Microenvironment as an Epigenetic Tumor Modifier. , 2003, 223, 315-348.		15
122	Excess area dependent scaling behavior of nano-sized membrane tethers. Physical Biology, 2018, 15, 026002.	0.8	15
123	Visualizing mechanical modulation of nanoscale organization of cell-matrix adhesions. Integrative Biology (United Kingdom), 2016, 8, 795-804.	0.6	12
124	Screening of organoids derived from patients with breast cancer implicates the repressor NCOR2 in cytotoxic stress response and antitumor immunity. Nature Cancer, 2022, 3, 734-752.	5.7	12
125	Molecular Profiling of Prostatic Acinar Morphogenesis Identifies PDCD4 and KLF6 as Tissue Architecture–Specific Prognostic Markers in Prostate Cancer. American Journal of Pathology, 2013, 182, 363-374.	1.9	11
126	1,25-Dihydroxycholecalciferol Supplementation Prevents Hypocalcemia in Magnesium-Deficient Chicks. Journal of Nutrition, 1993, 123, 764-771.	1.3	10

#	Article	IF	CITATIONS
127	Tumorâ€induced solid stress activates β atenin signaling to drive malignant behavior in normal, tumorâ€adjacent cells. BioEssays, 2015, 37, 1293-1297.	1.2	10
128	Fighting the force: Potential of homeobox genes for tumor microenvironment regulation. Biochimica Et Biophysica Acta: Reviews on Cancer, 2015, 1855, 248-253.	3.3	10
129	Site-Specific Modulation of Charge Controls the Structure and Stimulus Responsiveness of Intrinsically Disordered Peptide Brushes. Langmuir, 2016, 32, 5990-5996.	1.6	10
130	Tension in tumour cells keeps metabolism high. Nature, 2020, 578, 517-518.	13.7	10
131	Compartment resolved proteomics reveals a dynamic matrisome in a biomechanically driven model of pancreatic ductal adenocarcinoma. Journal of Immunology and Regenerative Medicine, 2018, 1, 67-75.	0.2	9
132	Activation of protein kinase C modulates dihydroxycholecalciferol synthesis in rat renal tubules. Cellular Signalling, 1992, 4, 293-301.	1.7	8
133	Laying down the tracks. Nature Materials, 2012, 11, 490-492.	13.3	7
134	Vitamin D Receptors and Compensatory Tissue Growth in Spontaneously Diabetic BB Rats. Annals of Nutrition and Metabolism, 1991, 35, 196-202.	1.0	6
135	New Horizons in Advocacy Engaged Physical Sciences and Oncology Research. Trends in Cancer, 2018, 4, 260-264.	3.8	6
136	Vitamin D metabolism in magnesium deficient chicks. Nutrition Research, 1989, 9, 1363-1369.	1.3	5
137	The microenvironment matters. Molecular Biology of the Cell, 2014, 25, 3254-3258.	0.9	5
138	The extracellular matrix: A dynamic niche in cancer progression. Journal of Experimental Medicine, 2012, 209, i1-i1.	4.2	5
139	Immunosuppressive glycoproteins associate with breast tumor fibrosis and aggression. Matrix Biology Plus, 2022, 14, 100105.	1.9	5
140	Patterning the Geometry of Human Embryonic Stem Cell Colonies on Compliant Substrates to Control Tissue-Level Mechanics. Journal of Visualized Experiments, 2019, , .	0.2	4
141	Extracellular Matrix and Nuclear Matrix Interactions May Regulate Apoptosis and Tissue-Specific Gene Expression: A Concept Whose Time has Come. Advances in Molecular and Cell Biology, 1997, 24, 1-55.	0.1	2
142	Altered Nucleus and Disease. , 2018, , 493-512.		2
143	Matrix molecules and their ligands. , 2020, , 119-132.		2
144	Mechanosensitive steroid hormone signaling and cell fate. Endocrinology, 0, , .	1.4	2

#	ARTICLE	IF	CITATIONS
145	Zena Werb 1945–2020. Nature Cancer, 2020, 1, 753-754.	5 . 7	1
146	Improving DCIS diagnosis and predictive outcome by applying artificial intelligence. Biochimica Et Biophysica Acta: Reviews on Cancer, 2021, 1876, 188555.	3.3	1
147	Tensional Homeostasis., 2011,, 3648-3650.		0
148	Tensional Homeostasis., 2015,, 1-4.		0
149	Tensional Homeostasis., 2017,, 4490-4493.		0
150	Zena Werb (1945–2020): Mourning the loss of a tissue microenvironment icon. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 27759-27760.	3.3	0
151	NCI's publication affiliation conundrum: Reframing innovation to incentivize an equitable path for advocate representation. Translational Oncology, 2022, 16, 101325.	1.7	0